

Archdiocese of Hartford

Mathematics Curriculum Standards

2012
Grades 1-12
Office of Catholic Schools
Archdiocese of Hartford
467 Bloomfield Avenue
Bloomfield, CT 06002
www.catholicschoolshartford.org
"Mathematics may not teach us how to inhale oxygen and exhale carbon dioxide, or to love a friend and forgive an enemy. But it gives us every reason to hope that every problem has a solution."

Purpose and Vision for Catholic School Education

Catholic Schools in the Archdiocese of Hartford welcome students of all faiths, ethnic groups and socio-economic backgrounds. The fundamental purpose of Catholic schools is to:

Provide a safe, nurturing and secure environment in which students encounter the living God, who in Jesus Christ, reveals His transforming love and truth;

Partner with parents to support students in their learning and in their search for knowledge, meaning, and truth;

Create a Catholic climate that contributes to the formation of students as active participants in the parish community;

Foster a culture of educational excellence through critical thinking skills, innovative rigorous curriculum standards, a global perspective, and an emphasis on moral education, community, and service;

Promote life-long learning that advances the development of the whole person - mind, body, and soul; and

Graduate students prepared to become productive, virtuous citizens and church leaders who will fashion a more humane and just world.

OFFICE OF CATHOLIC SCHOOLS ARCHDIOCESE OF HARTFORD
 TEL. (8(2) 2424362 • FAX 1460) 242.6483 wwwicatholischoobharfortatats

Otfice of the Superintendens of Catholic Schools

Fall 2012

Dear Colleagues in Catholic School Education:

Peace and greetings!
It is with pride and pleasure that I approve the revised Mathematics Curriculum Standards 2012 Merged with the Common Core State Standards for grades 1-12. The study of mathematics is one of the $21^{\text {st }}$ century's most significant challenges. The study of math and its advanced courses is vital to successful high school and college experiences. Successful participation in a fast-paced, farreaching, borderless world demands excellent training in mathematics. From concrete counting to the abstract use of formulas, mathematics gives meaning to our world, and hope for future generations.

> Today, perhaps more than ever it is important to recognize that learning is a
> lifelong experience. Rapid, radical changes in contemporary society demand well planned, continuing efforts to assimilate new data, new insights, new modes of thinking and acting. (To Teach as Jesus Did, 1972, \#43)

You, the educators, must understand that well-honed skills, creative use of technology, and creative problem solving skills are vital to a successful program of mathematics' study. The use of data will be used for life altering decisions. It is an awesome responsibility of educators to appropriately instruct our students in the application of mathematics as well as the morality implicit in that decision making.

I am grateful to Mrs. Valerie Mara, Director of Curriculum Design, and her committee who so carefully and responsibly have addressed the merged standards, so that our students will have the finest tools and most current training in mathematics in order to make the world a better place for all who will follow.

Yours in Christ Jesus,

Dale R. Hoyt
Superintendent of Catholic Schools
Archdiocese of Hartford

Rationale for Learning Mathematics in the Catholic Schools of the Archdiocese of Hartford

The vision statement of the Catholic schools of the Archdiocese of Hartford challenges schools to foster a culture of excellence through critical thinking, innovative and rigorous curriculum standards, a global perspective, and an emphasis on moral education, community and service. The discipline of mathematics is key to the achievement of that vision. The study of mathematics is the study of relationships, structure, and problem solving. Through math, students learn about patterns, chance, form, algorithms and change. They learn to observe, predict, analyze, and solve problems related to routine daily tasks.

Students learn to be creative and collaborative in problem solving. Significant moral decisions require the techniques of problem solving learned in a strong mathematics curriculum. By its nature, mathematics promotes logical and abstract thinking. The methodical approach needed to reach conclusions fosters the self-discipline necessary to solve simple and complex exercises. Knowledge of mathematical processes and skills are the tools needed to solve problems and construct valid arguments in other disciplines. Mathematics serves as a tool in both the natural and social sciences and stands as a logical foundation for the consideration of moral and ethical issues by Catholic Christian thinkers.

Modern technology requires varying forms of mathematical thought from all who use and create it. Mathematics can be appreciated in its purest form as an abstract art with order and pattern serving to reveal the beauty of God's creation. Most significant of all, the importance of mathematics instruction and learning lies in the universality of its problem solving applications to everyday life.

Defining Characteristics of Catholic Schools

(he Holy See's teaching on Catholic schools as compiled by Archbishop J. Michael Miller, CSB (The Holy See's Teaching on Catholic Schools, 2006), and from statements by Pope Benedict XVI and the American bishops. The characteristics define the deep Catholic identity of Catholic schools and serve as the platform on which the standards and benchmarks rest. The defining characteristics authenticate the standards and benchmarks, justifying their existence and providing their meaning. ${ }^{1}$ These characteristics provide the foundation for teaching and learning in all our schools. Purposeful and deliberate integration of these characteristics in all lesson planning defines us as Catholic schools in the Archdiocese of Hartford.

Defining Characteristics of Catholic Schools

1. Centered in the Person of Jesus Christ

Catholic education is rooted in the conviction that Jesus Christ provides the most comprehensive and compelling example of the realization of full human potential. (The Catholic School, 34, 35) In every aspect of programs, life, and activities, Catholic schools should foster personal relationship with Jesus Christ and communal witness to the Gospel message of love of God and neighbor and service to the world, especially the poor and marginalized. (Miller, The Holy See's Teachings on Catholic Schools, 2526)
2. Contributing to the Evangelizing Mission of the Church By reason of its educational activity, Catholic schools participate directly and in a privileged way in the evangelizing mission of the church. (The Catholic School, 9; The Catholic School on the Threshold of the Third Millennium, 5, 11; The Religious Dimensions of Education in a Catholic School, 33) As an ecclesial entity where faith, culture, and life are brought into harmony, the Catholic school should be a place of real and specified pastoral ministry in communion with the local Bishop. (The Catholic School, 44; The Catholic School on the Threshold of the Third Millennium, 14; The Religious Dimension of Education in a Catholic School, 34;) The environment in Catholic schools should express the signs of Catholic culture, physically, and visibly. (The Religious Dimension of Education in a Catholic School, 25; Miller, 40)

3. Distinguished by Excellence

Church documents, history, and practices, supported by Canon Law, establish that first and foremost a Catholic school is characterized by excellence. Consistent with the defining characteristics, Catholic schools should implement on-going processes and structures and gather evidence to ensure excellence in every aspect of its programs, life, and activities.
(Gravissimum Educationis 8 and 9; Code of Canon Law, Canon 806 \#2)

[^0]
4. Committed to Educate the Whole Child

Catholic school education is rooted in the conviction that human beings have a transcendent destiny, and that education for the whole person must form the spiritual, intellectual, physical, psychological, social, moral, aesthetic and religious capacities of each child. Catholic schools should develop and implement academic, co-curricular, faith-formation, and service/ministry programs to educate the whole child in all these dimensions. (The Catholic School, 29) National Standards and Benchmarks for Effective Catholic Elementary and Secondary Schools Center for Catholic School Effectiveness, School of Education, Loyola University Chicago in partnership with Roche Center for Catholic Education, Lynch School of Education, Boston College (2012) 6

5. Steeped in a Catholic Worldview

Catholic education aims at the integral formation of the human person, which includes "preparation for professional life, formation of ethical and social awareness, developing awareness of the transcendental, and religious education" (The Catholic School, 31). All curriculum and instruction in a Catholic school should foster: the desire to seek wisdom and truth, the preference for social justice, the discipline to become self-learners, the capacity to recognize ethical and moral grounding for behavior, and the responsibility to transform and enrich the world with Gospel values. The Catholic school should avoid the error that its distinctiveness rests solely on its religious education program. (Miller, 43-45, 52)

6. Sustained by Gospel Witness

Catholic schools pay attention to the vocation of teachers and their participation in the Church's evangelizing mission. (The Catholic School on the Threshold of the Third Millennium, 19; Lay Catholics in Schools, 37) A Catholic educator is a role model for students and gives testimony by his or her life and commitment to mission. (Benedict XVI, June, 2005; Miller, 53) As much as possible, Catholic schools should recruit teachers who are practicing Catholics, who can understand and accept the teachings of the Catholic Church and the moral demands of the Gospel, and who can contribute to the achievement of the school's Catholic identity and apostolic goals, including participation in the school's commitment to social justice and evangelization. (United States Conference of Catholic Bishops, National Directory for Catechesis, 231)
7. Shaped by Communion and Community Catholic school education places an emphasis on the school as community-an educational community of persons and a genuine community of faith. (Lay Catholics in Schools, 41, 22) Catholic schools should do everything they can to promote genuine trust and collaboration among teachers, with parents as the primary educators of their children, and with governing body members to foster appreciation of different gifts that build up a learning and faith community and strengthen academic excellence. (Lay Catholics in Schools, 78) The Catholic school should pay especially close attention to the quality of interpersonal relations between teachers and students, ensuring that the student is seen as a person whose intellectual growth is harmonized with spiritual, religious, emotional, and social growth. (The Catholic School on the Threshold of the Third Millennium, 18)

8. Accessible to All Students

By reason of their evangelizing mission, Catholic schools should be available to all people who desire a Catholic school education for their children. (Gravissimum Educationis, 6; Code of Canon Law, Canons 793 \#2; Renewing Our Commitment to Catholic Elementary and Secondary Schools in the Third Millennium, Introduction;) Catholic schools in concert with the Catholic community should do everything in their power to manage available resources and seek innovative options to ensure that Catholic school education is geographically, programmatically, physically, and financially accessible.
9. Established by the Expressed Authority of the Bishop

Canon Law states, "Pastors of souls have the duty of making all possible arrangements so that all the faithful may avail themselves of a Catholic education" (Code of Canon Law, Canon 794). Bishops need to put forward the mission of Catholic schools, support and enhance the work of Catholic schools, and see that the education in the schools is based on principles of Catholic doctrine. (John Paul II, Pastores Gregis, 52) Catholic schools have a formal and defined relationship with the Bishop guided by a spirituality of ecclesial communion, and should work to establish a relationship marked by mutual trust, close cooperation, continuing dialogue, and respect for the Bishop's legitimate authority. (Code of Canon Law, Canon 803 \#1 and \#3; Miller, 33)

Structure of the Document

This mathematics standards-based curriculum represents the compilation of on-going research into current mathematics teaching best practice, thoughtful consideration of teaching and assessment methods used in the Archdiocese, and collaboration and consultation with teachers and experts in the field of mathematics in developing content and student learning objectives.

The standards for mathematics instruction in the Archdiocese of Hartford are divided by grade level and then outlined sequentially by quarter. Within each grade level, with the exception of Algebra I, High School Geometry, High School Algebra II, and Precalculus, there are four domains:

- Number Theory, Operations, and Algebraic Thinking
- Measurement
- Geometry
- Data Analysis, Statistics and Probability

Domains are large groups of related standards. Standards from different domains may sometimes be closely related.

The ARCHDIOCESAN STANDARDS listed at the beginning of each grade level originated as restatements of the National Council of Teachers of Mathematics (NCTM) Learning Standards and have been merged with the Common Core State Standards (CCSS). The Archdiocesan standards reflect the spirit of the Common Core with its instructional shifts while maintaining the integrity of rigor and relevance of our standards. "These movements served to highlight the many variables of teaching and learning and the centrality of curriculum development... these perennial movements reflect an attempt to mirror the tradition of excellence that has been the hallmark of the Catholic schools in the United States while, at the same time, serving as a reminder to us that we must continue to live out our tradition in a new century highlighting those very same variables." (Krebbs, 2012)

Standards are the primary instructional targets that outline essential topics and skills that students must know and be able to do by the end of each respective grade and high school. Following each set of standards are key focus skills and essential questions that describe overarching outcomes. Student objectives reflect broad concepts that reflect what students should understand and master. Enabling outcomes are bulleted skills that outline what students should specifically be able to do and demonstrate mastery of, in order to achieve the broader student objectives. Teachers are expected to integrate mathematics in all subject areas and to protect instructional time to ensure a greater depth of understanding in the area of mathematics across all grade levels.

The student objectives outlined in each quarter represent an instructional plan for the year. This curriculum provides guidance to teachers regarding content to be addressed at each specific grade level and in each quarter. The standards are comprehensive and cover a wide range on the curricular spectrum. Therefore, it is recommended that teachers and administrators identify essential, core curriculum content that is aligned with the provided *Benchmarks for Critical Foundations in Mathematics and emphasizes enduring understandings, reinforces essential skills and procedures, and includes student interests. Content must be taught for depth of understanding rather than coverage of objectives. As schools meet in their professional learning communities, conversations should be had regarding the use the standards, the use of testing data including formative data, summative data, and standardized test data in order to effectively and efficiently inform instructional planning to meet the needs of each student, and to discuss best practices.

Daily standards-based lesson planning enables educators to align curriculum and instruction with standards, as they have been adapted by this Archdiocese, thereby keeping the goals of our students in mind. The purpose of standards-based curriculum is to empower all students to meet new, challenging standards of education and to "provide them with lifelong education...that equips them to be lifelong learners." (Fullan, 2006)

The premise of this curriculum is based upon the NCTM Standards, CCSS, and the Purpose and Vision for Catholic School Education in the Archdiocese of Hartford. Instruction should be modeled upon those standards, both in content and in style. Classrooms should incorporate a learning environment that values problem solving in real life situations and encourages the active participation of the students in the learning process. Instruction should engage students in the learning process rather than allowing them to be the passive recipients of information. Providing opportunities for students to think creatively and critically, to communicate and collaborate, and to integrate technology will prepare them for their future.

Each introduction of a new skill or concept should be developed with the idea that knowing mathematics is doing mathematics. Associated learning activities should arise from problem situations. Learning should include opportunities for appropriate project work, group and individual assignments alike, discussions between teachers and students, practice, and teacher exposition. In addition, students should have frequent opportunities to formulate problems and questions that arise from their own interests. Small group work can be both collaborative and cooperative, ensuring that each individual student is assessed and not the "group." The ultimate goal of group work should be to enable the student to become a more independent thinker.

Accountable Talk in Mathematics

Instructional programs from prekindergarten through grade $\mathbf{1 2}$ should enable all students to--

- organize and consolidate their mathematical thinking though communication;
- communicate their mathematical thinking coherently and clearly to peers, teachers, and others;
- analyze and evaluate the mathematical thinking and strategies of others;
- use the language of mathematics to express mathematical ideas precisely.

Just as students are required to read, write, and speak about what they have learned in the language arts and other content areas, so should this be the practice in mathematics. As students are asked to communicate about the mathematics they are studying ("Accountable Talk"), they gain insights into their thinking. In order to communicate their thinking to others, students naturally reflect on their learning and organize and consolidate their thinking about mathematics. The ability to write about mathematics should be particularly nurtured across the grades.

By working on problems with classmates, students also have opportunities to see the perspectives and methods of others. They can learn to understand and evaluate the thinking of others and to build on those ideas. They may benefit from the insights of students who solve the problem using a visual representation. Students need to learn to weigh the strengths and limitations of different approaches, thus becoming critical thinkers about mathematics. Differentiating instruction plays a paramount role in this determination and in planning daily learning objectives.

Problem Solving

The mastery of problem solving strategies is a critical component of $21^{\text {st }}$ century literacies that students must advance to become productive members of a global society. As the curriculum evolves during the course of the school year, teachers are urged to note the various problem-solving strategies cultured and integrated throughout the enabling outcomes. Some of these strategies may include: draw text and electronic pictures, make a chart, table, graph, use manipulatives, choose a method/operation, write number sentences, make a model, identify patterns, solve a simpler problem, act it out, use logical reasoning, guess and check, or work backwards.

Resources/Strategies/Cross Curricular Connections

Each grade level of the document ends with two or three tables. On the primary and intermediate levels, there is a resource table for reading-math connections. On all levels, there are two additional tables, one that suggests teaching and learning strategies and another that lists suggestions for cross curricular and Catholic social teachings connections. Strategies and integration activity suggestions are minimal as these sections are designed to be expounded upon by the classroom teacher.

Sequence

The Archdioceses of Hartford Mathematics Curriculum Standards is organized in sequence by quarter. Teachers and administrators should determine what is core or essential for all learners and what is supplemental or enrichment aspects of the curriculum, using the Archdiocesan Benchmarks as a guide. Each mathematics teacher should become familiar with the objectives for the preceding as well as the following grade, and have a good overall picture of the sequence of instruction throughout the twelve grades.

Grades Seven/Eight, Algebra I and Secondary

It is our goal that all students will complete Algebra I by the end of eighth grade. Completion of algebra in grade eight affords students the possibility of completing five years of secondary mathematics before college. Nurturing the expectation that all students will take Algebra I eliminates the possibility of inequality and untapped potential that may result from accelerating only a few students into Algebra. However, if a student needs a stronger foundation in standard grade 7 or grade 8 math to ensure a successful year of Algebra I in high school, that is the recommended course for that student. Benchmark assessments are encouraged to be given at the end of grade 6 to determine readiness for a grade 7 pre-algebra course. The Archdiocesan Algebra Readiness Test should be given at the end of grade 7 to determine readiness for a grade 8 algebra course. The Archdiocesan Algebra I End-of-Course Assessment should be given to students completing the $8^{\text {th }}$ grade Algebra I course. The most important goal is that Catholic school students in the Archdiocese of Hartford have a rich and challenging middle school math experience; one that builds on the foundation of algebraic thinking begun and nurtured through the primary and intermediate levels.

The secondary school structure is very different from its primary, intermediate, and middle school counterparts. This section of the document, more than any other, is based on Archdiocesan Curricular Standards, the Common Core State Standards, as well as the Massachusetts State Standards which also exceeds CCSS. The structure follows a more general framework to accommodate both required and elective math courses and the various ability levels offered. Each school should design their course syllabi using these standards as the foundation for teaching and learning and year-end goals.

Use of Technology

As in all areas of curriculum, technology can and should enhance learning of mathematics. There are countless website resources for student exploration and practice and for assisting teachers in lesson planning. Interactive white boards provide powerful opportunities for motivating and challenging students in the study of mathematics. Calculators, too, are a valuable tool in math instruction. The National Council of Teachers of Mathematics, in its position statement on the use of technology, states:

Calculators, computer software tools, and other technologies assist in the collection, recording, organization, and analysis of data. They also enhance computational power and provide convenient, accurate, and dynamic drawing, graphing, and computational tools. With such devices, students can extend the
range and quality of their mathematical investigations and encounter mathematical ideas in more realistic settings.

In the context of a well-articulated mathematics program, technology increases both the scope of the mathematical content and the range of the problem situations that are within students' reach. Powerful tools for computation, construction, and visual representation offer students access to mathematical content and contexts that would otherwise be too complex for them to explore. Using the tools of technology to work in interesting problem contexts can facilitate students' achievement of a variety of higher-order learning outcomes, such as reflection, reasoning, problem posing, problem solving, and decision making. Technologies are essential tools within a balanced mathematics program. Teachers must be prepared to serve as knowledgeable decision makers in determining when and how their students can use these tools most effectively. (http://www.nctm.org/about/position_statements/position_statement)

While these tools do not replace the need to compute mentally, do reasonable paper and pencil computation, and learn facts; calculators, computers, hand held data devices, etc. must be accepted as valuable tools for learning and teaching mathematics. Their effectiveness depends on the ability of students to recognize reasonable answers.

Additionally, technological tools enable students to extend their problem solving ability beyond their knowledge of paper and pencil computation. This increases their math power. These tools also free students from tedious computation and allow them to concentrate on problem solving, both the posing and the solving of problems.

Calculators in grades 5 through 8 should include the following features: square root, reciprocal, exponent, +/keys, algebraic logic, and constants. Some use of graphing calculators in Algebra I is recommended.

All textbook publishers provide interactive websites for teachers, students, and parents. (These are listed in the Approved Programs and Texts list published by the Office of Catholic Schools.) Almost all have the availability of online texts and often have proprietary software in conjunction with their series. This support includes lesson plans for teachers, practice and challenge opportunities for students, as well as activities for parents. In addition, both web and software resources offer a variety of choices in assessment tools. Teachers should investigate, select and use these resources carefully.

Instructional Resources

The materials needed to support math instruction on every level should reflect three sequential components of learning. First, the student needs multiple concrete experiences that illustrate a mathematical principle or process. Students should be given access to manipulatives (both physical and virtual) - those materials that can be organized, categorized, combined, separated, changed - that provide varied concrete experiences of mathematical thinking and processes. These materials should include, but are not limited to: unifix cubes, geoboards, spinners, coins, counters, pattern blocks, fraction pieces, algebra tiles, compasses, scales, scissors, rulers, protractors, graph paper, grid/dot paper. Samples of these are found in the teachers resources of any math text.

Once the student has recognized a general pattern, materials and instruction are provided to help the student explain, describe, and represent what has taken place. The manipulation of materials is represented as an algorithm, a written record of thinking. Finally, the student develops the ability to apply concrete experiences to real world and abstract situations, often as problem solving.

Each student should have adequate resources to learn. For most schools, these resources would include a text either in print or electronic form. The text should be chosen from the Archdiocesan Approved Programs and Texts list. Additional classroom resources might include student workbooks, computer generated practice materials and games designed to develop mathematical thinking.

All schools should have a membership in the National Council of Teachers of Mathematics.

*ADH Benchmarks for Critical Foundations in Mathematics

The following Benchmarks for Critical Foundations in Mathematics should be used to guide classroom curricula, mathematics instruction, and assessments. They should be interpreted flexibly, to allow for the needs of students and teachers. For our purposes, proficient is defined as $80-85 \%$ mastery.

The major goals for K-8 mathematics education should be:

- Proficiency with whole numbers
- Proficiency with fractions (including decimals and percents)
- Proficiency with particular aspects of geometry and measurement

Fluency with Whole Numbers

1. By the end of grade 3, students should be proficient with the addition and subtraction of whole numbers.
2. By the end of grade 4, students should be proficient with multiplication and division of whole numbers.

Fluency with Fractions

1. By the end of grade 4, students should be able to identify and represent fractions and decimals, and compare them on a number line or with other common representations of fractions and decimals.
2. By the end of grade 5 , students should be proficient with comparing fractions and decimals and common percents, and with the addition and subtraction of fractions and decimals.
3. By the end of grade 5, students should be proficient with multiplication and division of fractions and decimals.
4. By the end of grade 5, students should be proficient with all operations involving positive and negative integers.
5. By the end of grade 5, students should be proficient with all operations involving positive and negative fractions.
6. By the end of grade 6, students should be able to solve problems involving percent, ratio, and rate, and extend this work to proportionality.

Geometry and Measurement

1. By the end of grade 3, students should be able to solve problems involving perimeter.
2. By the end of grade 4, students should be able to solve problems involving the area of triangles and all quadrilaterals having at least one pair of parallel sides (i.e., trapezoids).
3. By the end of grade 6 , students should be able to analyze the properties of two-dimensional shapes and solve problems involving perimeter and area.
4. By the end of grade 7, students should be familiar with the relationship between similar triangles and the concept of the slope of a line.
5. By the end of grade 8, students should be able to analyze the properties of three-dimensional shapes and solve problems involving surface area and volume.

National Council of Teachers of Mathematics

Mathematics Standards

Instructional programs from pre-kindergarten through grade twelve should enable all students to:

1. Students understand numbers, ways of representing numbers, relationships among numbers, and number systems
2. Students understand meanings of operations and how they relate to one another
3. Students compute fluently and make reasonable estimates
4. Students understand patterns, relations, and functions
5. Students represent and analyze mathematical situations and structures using algebraic symbols
6. Students use mathematical models to represent and understand quantitative relationships
7. Students analyze change in various contexts
8. Students analyze characteristics and properties of two- and three-dimensional geometric shapes and develop mathematical arguments about geometric relationships
9. Students specify locations and describe spatial relationships using coordinate geometry and other representational systems
10. Students apply transformations and use symmetry to analyze mathematical situations
11. Students use visualization, spatial reasoning, and geometric modeling to solve problems
12. Students understand measurable attributes of objects and the units, systems, and processes of measurement
13. Students apply appropriate techniques, tools, and formulas to determine measurements
14. Students formulate questions that can be addressed with data and collect, organize, and display relevant data to answer them
15. Students select and use appropriate statistical methods to analyze data

Archdiocesan Standards

16. Students will use their study of math to make data-driven moral decisions and to promote justice in the world.

> We must expect all of our students to learn mathematics well beyond what we previously expected. We need all students to be more proficient than in the past, and we need many more students to pursue careers based on mathematics and science.

STANDARDS FOR Mathematical Practice	SUMMARY
1. Make sense of problems and persevere in solving them.	- Find meaning in problems. - Analyze, predict, and plan solution pathways. - Verify answers. - Students ask themselves the question: "Does this make sense?"
2. Reason abstractly and quantitatively.	Make sense of quantities and their relationships in problems. Create coherent representations of problems.
3. Construct viable arguments and critique the reasoning of others.	Understand and use information to construct arguments. Make and explore the truth of conjectures. Justify conclusions and respond to arguments of others.
4. Model with mathematics.	- Apply mathematics to problems in everyday life. - Identify quantities in a practical situation. - Interpret results in the context of the situation and reflect on whether the results make sense.
5. Use appropriate tools strategically.	Consider the available tools when solving problems. Are familiar with tools appropriate for their grade or course (pencil and paper, concrete models, ruler, protractor, calculator, spreadsheet, computer programs, digital content located on a Web site, and other technological tools).
6. Attend to precision.	Communicate precisely to others. Use clear definitions, state the meaning of symbols, and are careful about specifying units of measure and labeling axes. Calculate accurately and efficiently.
7. Look for and make use of structure.	Discern patterns and structures. Can step back for an overview and shift perspective. See complicated things as single objects or as being composed of several objects.
8. Look for an express regularity in repeated reasoning.	When calculations are repeated, look for general methods, patterns, and shortcuts. Be able to evaluate whether an answer makes sense.

GRADE 1 ADH STANDARDS:

Number Theory, Operations, and Algebraic Thinking (NOA)
NOA.1.1 Understand numbers, place value, ways of representing numbers, and relationships among numbers
NOA.1.2 Understand and apply place value, properties of operations, and the relationship between addition and subtraction
NOA.1.3 Represent and solve problems involving addition and subtraction.
NOA.1.4 Add and subtract fluently within 20
NOA.1.5 Understand patterns in various contexts
NOA.1.6 Use mathematical models to represent and understand quantitative relationships
NOA.1.7 Analyze change of quantity and quality using patterns
NOA.1.8 Use addition and subtraction with commutative and associative properties to determine equivalence and solve
NOA.1.9 Use fractions to draw conclusions about fairness and equity of resources

Measurement (M)

M.1.1 Understand standard and nonstandard units of measurement
M.1.2 Apply appropriate techniques and tools to solve problems including measurements, time, and money
M.1.3 Understand measurable attributes of objects and the units, systems, and processes of measurement

Geometry (G)

G.1.1 Analyze characteristics and properties of two and three dimensional geometric shapes
G.1.2 Apply transformations and use symmetry to analyze mathematical situations
G.1.3 Use visualization, spatial reasoning, and geometric modeling to solve problems

Data Analysis \& Probability (DP)

DP.1.1 Select and use appropriate methods to collect, organize, and analyze data
DP.1.2 Develop and evaluate inferences and predictions that are based on data
DP.1.3 Understand and apply basic concepts of probability

GRADE 1 KEY FOCUS SKILLS:

- DEVELOP AN UNDERSTANDING OF ADDITION AND SUBTRATION; ADD AND SUBTRACT FLUENTLY WITHIN 20
- APPLY ADDITION AND SUBTRACTION SKILLS AND CONCEPTS TO REAL WORLD PROBLEMS

MATH FACTS ARE CUMULATIVE SKILLS AND MUST BE CONSISTENTLY REINFORCED THROUGH PRACTICAL, AUTHENTIC APPLICATIONS THROUGHOUT THE YEAR TO ACHIEVE MASTERY.

GRADE 1: ESSENTIAL UNDERSTANDINGS

Numbers are used to name, count, and place objects in order.

Estimation is used to approximate exact values.

A variety of methods are used to develop understanding and skill in estimation and computation.

Patterns are used to investigate, understand, and describe the world.

Patterns and number relationships are used to understand and solve problems.

Number operations are used to solve problems.

Measurement is used to communicate about size and shape

Geometric shapes and positions of objects are used to describe the world.

Data can be used to predict outcomes and support conclusions.

GUIDED QUESTIONS -- What Students Need to Know

How are numbers used to name, count, and place objects in order? How do fractions describe parts of a whole?
How does position of a digit in a multi-digit number determine its value? Why is it helpful to be able to count from a given number instead of from one?
How do people know if an estimate is reasonable?
When is it appropriate to use mental math, pencil and paper, calculators, or computers to do rounding and computation?
How are concrete materials used to model and solve mathematical problems?
What kinds of patterns can be found in natural and human-designed environments?
How are number patterns used to solve problems?
In an open sentence, how can the unknown number be determined from the known numbers and the operation?

How do characteristics of a problem lead to a choice of a number operation? What rules/properties influence the ways operations can be used to solve problems?
How is subtraction related to addition?
How are length, weight, time, and money used to describe and compare things?
When is it useful to estimate measurements?
What kinds of tools are used to find measurements?
How can three-dimensional shapes be combined to create a new shape?
How do plane figures differ from solid figures?
What are examples of geometric shapes and relationships in architecture, art, and nature?

How can data be organized?
How can data be used to draw conclusions and make decisions?
What factors need to be considered in making a prediction?

G1:Q1

TOPIC	OBJECTIVE	ENABLING OUTCOMES: The students will...
Addition \& Subtraction to 12	To count by groups, add one more to groups, and compare groups. (NOA.1.4; 1.8)	- Count, read, write, order, compare, expand and represent numbers to 120 - Count on from a given amount, orally and with models - Count back from 20 - Identify one more and one less than a number - Plot numbers to 100 on a number line - Identify and use zero
	To develop and apply fact families using inverse relationships. (NOA 1.1; 1.4; 1.2)	- Memorize addition and related subtraction facts to 12 - Check subtraction with addition - Relate the inverse relationship of addition and subtraction facts to 12 - Apply addition and subtraction facts to real world situations - Solve problems involving addition and subtraction
	To add by counting and combining and subtract by separating, comparing, or counting on or back. (NOA.1.1; 1.3, 1.8) To represent the result of counting, combining, and separating sets of objects using number sentences. (NOA.1.4; 1.6) To examine attributes of objects and describe their relationships. (NOA.1.5;1.7)	- Represent addition and subtraction on a number line - Model real-life situations that involve addition and subtraction of whole numbers using objects, pictures, and open sentences - Identify, describe, extend, and create patterns - Describe how specific patterns are generated

G1:Q2

TOPIC	OBJECTIVE	ENABLING OUTCOMES: The students will...
Place Value	To represent and order 2 digit numbers using the base ten place value system. (NOA.1.4; 1.8)	- Identify number words to ten - Identify ordinal position of objects first through tenth - Identify ordinal words to tenth - Identify and name place values - Use place value models to identify tens and ones - Identify and name place values to hundreds place - Identify 10 more and 10 less than a number
	To describe quantitative relationships and develop benchmark representations. (NOA.1.6)	- Estimate quantity of items in a group - Estimate and describe quantity with benchmark amount such as 1,10 and 100 .

 Subtraction to 20	To identify and represent quantities as equivalent or non-equivalent. (NOA.1.6; 1.8)	- Demonstrate equivalence using models - Identify and use symbols of inequality ($<,>$) - Identify and apply symbol of equality (=) - Balance simple number sentences by finding the missing numbers
	To analyze change of quantity and quality using patterns. (NOA.1.7) To develop and apply fact families using inverse relationships. (NOA.1.1; 1.2; 1.4)	- Skip count by 2,5,10 - Represent even and odd numbers concretely as pairs and leftover ones - Identify even and odd numbers to 100 - Describe relationships between quantities with familiar contexts using ratios: one desk has four legs, two desks, eight, etc.
	To build on previous understanding of addition and subtraction to develop quick recall of basic addition and subtraction facts (NOA 2.3) To understand and describe functional relationships in real-world situations. (NOA.1.8) To create and solve one step story and picture problems. (NOA.1.3) To describe quantitative relationships and develop benchmark representations. (NOA.1.6)	- Memorize addition and related subtraction facts to 20 - Identify missing addends (sums to 20) - Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20 - determine the missing addend or subtrahend in a problem ($3+_{-}=5$ or $-2=3$) - understand subtraction as an unknown addend problem - add and subtract using commutative and associative properties - Identify functional number relationships - Choose addition or subtraction to complete function tables - Choose the correct operation in a word problem (+,) - Identify reasonable answers to problems that reflect real-world experience. - Select a reasonable answer to a problem reflecting a change in place value (i.e., $5,50,500$)

G1:Q3

TOPIC	OBJECTIVE	ENABLING OUTCOMES: The students will...
Money	To determine and compare coin values (M.1.2; 1.3) To express monetary value in oral and written forms (M.1.2; 1.3) To recognize, identify, and trade equivalent sets of coins (M.1.2; 1.3) To express monetary value in oral and written forms (M.1.2; 1.3) To solve problems involving money (M.1.2; 1.3) To use calendars and clocks to	- Name a penny, nickel, dime, quarter and dollar bill - Identify the value of a penny, nickel, dime, quarter and dollar bill - Use the cents sign (c) - Determine and compare values of sets of coins - Trade with sets of pennies and dimes - Count and show money to one dollar - Use dollar sign (\$) with decimal point - Solve problems involving real world use of money - Add and subtract money to 12 cents - Tell and/or show time to the hour using both analog and digital clocks - Tell and/or show time to the half hour using both

Measurement	measure and record time (M.1.2; 1.3) To plan and sequence events (M.1.1)	analog and digital clocks - Write time in standard notation - Estimate elapsed or projected time in terms of an hour or a minute - Identify days of the week, months of the year, current year - Use a calendar to identify dates - Read and write the date - Identify the number of days in a month - Use a calendar to identify dates and sequence events - Describe time in terms like: today, yesterday, next week, last week, tomorrow - Estimate and compare the length of time needed to complete tasks using terms like longer or shorter
	To measure through direct comparison and repetition of units (M.1.2; 1.3) To use standard units to communicate measure (M.1.2; 1.3) To use concrete examples to make estimates and to determine and describe the reasonableness of answers to measurement problems (M.1.2; 1.3) To measure through direct comparison and repetition of units (M.1.2; 1.3) To use standard units to communicate measure (M.1.1) To use concrete examples to make estimates and to determine and describe the reasonableness of answers to measurement problems (M.1.2; 1.3) To measure through direct comparison and repetition of units (M.1.2; 1.3)	- Recognize and apply nonstandard units of measure - Identify inch and foot as standard customary units - Demonstrate approximate inch, approximate foot - Compare lengths of given objects using "longer" and "shorter" - Estimate and measure length and height in nonstandard units - Identify centimeter as standard metric measure - Estimate and measure length and height in inches and centimeters - Identify cup, pint, quart and pound as standard customary units - Identify liter as standard metric unit - Compare capacity using "more" or "less" - Compare mass of objects using a balance scale - Compare volume/capacity of given containers using concrete materials, i.e., water, sand, beans, etc. - Solve problems using forms of measurement

G1:Q4

TOPIC	OBJECTIVE	ENABLING OUTCOMES: The students will...
Geometry	To examine attributes of objects and describe their relationships. (G.1.1)	- Sort, classify, and order objects by size, number, and other properties
	To describe, name and interpret relative direction, location, proximity, and position of objects (G.1.3)	Identify points inside, outside, or on a figure Use the descriptive terms: top, bottom, left, right, near, far, up, down, above, below, next to, close by Sort and describe plane figures (square, circle, rectangle, triangle)

Fractions Graphs Number Theory	To classify plane figures and solids by common characteristics including examples with change of position (G.1.3) To recognize and use geometric relationships to solve problems (G.1.3) To identify and compare equal parts of a whole (NOA.1.9) To partition a set of objects into smaller groups with equal amounts. (NOA.1.9) To identify and compare equal parts of a whole (NOA.1.9) To determine the likelihood of certain events through simple games and experiments (DP.1.3) To collect, organize, and describe data (DP.1.1) To analyze data in tables and graphs (DP.1.1; 1.2) To add by counting and combining and subtract by separating, comparing, or counting on or back. (NOA.1.8)	- Identify plane figures - Identify common objects in the environment that depict plane figures - Count corners and sides of plane figures - Explore and identify solid figures (cube, cone, cylinder, sphere) - Identify figures having the same size and shape - Identify open or closed figures - Explore lines of symmetry - Create shapes and design with symmetry - Build and draw two and three dimensional shapes - Draw shapes from memory (i.e., draw a triangle) - Predict the results of putting together and taking apart two- and three-dimensional shapes - Identify equal parts of a whole - Make a whole of equal sized parts of familiar objects - Identify halves and quarters using models - Identify half of a small set of objects considered to be the whole. - Read, write, and identify $1 / 2,1 / 3,2 / 3,1 / 4,2 / 4,3 / 4$ - Differentiate halves, thirds and fourths from other fractional parts - Recognize and model halves, thirds, and fourths of a whole or set; understand that decomposing a whole or set into more equal shares creates smaller shares - Identify fractions on a number line - Compare parts of a whole object and estimate whether they are closer to zero, one half or one whole - Identify events as certain, possible or impossible (If a bowl is filled with red jelly beans, is it possible to pick a red jelly bean from the bowl? A green one?) - Observe, record, graph, and describe the results of simple probability activities and games - Read and Use data from a graph, table, glyphs (coded pictures), and/or picture - Make and interpret a real object, picture, and bar graphs - Make and interpret a tally chart - Pose questions to collect data - Conduct simple surveys to gather data - Choose and Use various methods to organize information including lists, systematic counting, sorting, graphic organizers, and tables - Use comparative language to describe/interpret data in tables and graphs - Use a Venn diagram and other graphic organizers to sort items - Develop, describe, choose and use strategies to add and subtract one- and two-digit numbers

		• Add and subtract 2 digit numbers without regrouping \bullet Add 1 and 2 digit numbers with three addends (column addition)	
		Add and subtract 3 digit numbers without regrouping $\bullet \quad$Add and subtract using commutative and associative properties	

Resources for Grade One Math Literacy Connections	
Strand	Book Title
Number Theory	Over in the Meadow, Langstaff and Rojankowsky. San Diego: Harcourt Brace, 1957. Hold Tight Bear, Rod Maris, New York: Delacorte, 1989. Yellow Ball, Molly Bang, New York: Morrow, 1991. The Enormous Turnip, Kathy Parkinson. The Crickets from Mouse Soup, Arnold Lobel. Maurice Goes to School, B. Wiseman. Bandaids, Shel Silverstein. Animal Numbers, Bert Kitchen, New York: Dial, 1987. The Bicycle Race, Donald Crews, New York: Greenwillow, 1985. M\&M Counting Book, Barbara Barbieri McGrath. Bunches and Bunches of Bunnies, by Louise Matthews. Eating Fractions, Bruce McMillan. New York: Scholastic, 1991. The Doorbell Rang, Pat Hutchins. New York: Scholastic, 1986.
Algebra	Ten in a Bed, Mary Rees, Boston: Little Brown, 1988. Mouse Count, Ellen Stoll Walsh, San Diego: Harcourt Brace, 1990. Bat Jamboree, Kathi Appelt, Morrow, 1996. Frog and Toad are Friends, Arnold Lobel, Harper Trophy, 1970.
Geometry	Circles, Triangles, and Squares, Tana Hoban. New York: Macmillian, 1974. The Most Wonderful Eggs in the World, Melme Heine. The Greedy Triangle, Marilyn Burns. Grandfather Tangs Story, Ann Tompert.
Measurement	"A List" from Frog and Toad Together, Arnold Lobel. Mud for Sale, Brenda Nelson. If You Give a Mouse a Cookie, Laura Joffee Numeroff. New York: Harper Collins 1985. Inch by Inch, Leo Lionni. New York: Astor-Honor, 1962. Is It Larger, Is It Smaller, Tana Hoban, New York: Green Willow, 1985.

Suggested Cross Curricular and Catholic Social Teaching Links

Grade One

* Students measure the growth of classroom plants, record their observations and talk about taking care of God's creation. (Science, Math, Religion, Written language)
* Students keep a graph of sunny/cloudy days and write prayers thanking God for both. (Math, Science, Religion, Language Arts)

GRADE 2 ADH STANDARDS

Number Theory, Operations, and Algebraic Thinking (NOA)
NOA.2.1 Understand and apply place value, ways of representing numbers, properties of operations, and the relationship between addition and subtraction
NOA.2.2 Represent and solve problems involving addition and subtraction.
NOA.2.3 Add and subtract fluently within 20
NOA.2.4 Use fractions to draw conclusions about the fairness and equity of resources
NOA.2.5 Understand patterns; represent and analyze mathematical problems using algebraic properties of addition and subtraction
NOA.2.6 Use mathematical models to represent and understand quantitative relationships
NOA.2.7 Analyze change of quantity and quality using patterns
NOA.2.8 Use addition and subtraction with commutative and associative properties to determine equivalence and solve
NOA.2.9 Use fractions to draw conclusions about fairness and equity of resources

Measurement (M)

M.2.1 Use appropriate tools to measure and estimate length, volume, and capacity in standard and nonstandard units.
M.2.2 Relate addition and subtraction to length, time, and/or money
M.2.3 Solve problems including measurement, time, and/or money

Geometry (G)

G.2.1 Analyze characteristics and properties of two and three dimensional geometric shapes and develop mathematical arguments about relationships
G.2.2 Apply transformations and use symmetry to analyze mathematical situations
G.2.3 Use visualization, spatial reasoning, and geometric modeling to solve problems

Data Analysis and Probability (DP)

DP.2.1 Select and use appropriate methods to collect, organize, and analyze data
DP.2.2 Develop and evaluate inferences and predictions that are based on data
DP.2.3 Understand and apply basic concepts of probability

GRADE 2 KEY FOCUS SKILLS:

- ADD AND SUBTRACT FLUENTLY WITHIN 20; APPLY SKILLS TO REAL WORLD APPLICATIONS
- ADD AND SUBTRACT WITHIN 100 USING PAPER AND PENCIL
- EXTEND UNDERSTANDING OF BASE-TEN NOTATION

MATH FACTS ARE CUMULATIVE SKILLS AND MUST BE CONSISTENTLY REINFORCED THROUGH PRACTICAL, AUTHENTIC APPLICATIONS THROUGHOUT THE YEAR TO ACHIEVE MASTERY.

GRADE 2 - Essential	Guided Questions -- What Students Need to Know
Understandings	

Place value is used to determine the value of each digit in the number.

Number operations are used to solve problems.

A variety of methods are used to develop understanding and skill in rounding and computation.

Whole figures can be divided into fractional parts.

Patterns and number relationships are used to understand and solve problems.

Measurement is used to communicate about size, shape, time, and money.

Geometric shapes are used to describe the world.

Data can be used to predict outcomes and support conclusions.

How does position of a digit in a multi-digit number determine its value? When adding two- or three-digit numbers, what happens when the two digits in the ones column equal a number greater than 10 ?

How do characteristics of a word problem lead to a choice of a number operation?
What rules/properties influence the ways operations can be used to solve problems?

When is it appropriate to use mental math, pencil and paper, and calculators or computers to do estimation and computation?
How are concrete materials used to model and solve mathematical problems?

Why is it possible for equal shares of the same whole to have different shapes?

How are number patterns used to solve problems?
In an open sentence, how can the unknown number be determined from the known numbers and the operation?

When is it useful to estimate measurements?
What kinds of tools are used to find measurements?
What strategies can be used to measure and compare objects?
What are examples of geometric shapes and relationships in architecture, art, and nature?
How can shapes and relationships be used to create things?
What kind of data can be collected?
How can data be organized?
How is data used to draw conclusions and make decisions?

G2:Q1

TOPIC	OBJECTIVE	ENABLING OUTCOMES: The students will...
Addition and Subtraction to 20 Place Value Add and Subtract 2- Digit Numbers	To represent the result of counting, combining and separating sets of objects using number sentences (NOA2.1, 2.2) To develop fact families using inverse relationships (NOA 2.8, 2.3, 2.4) To build on previous understanding of addition and subtraction to develop quick recall of basic addition and subtraction facts (NOA 2.3) To analyze how both repeating and growing patterns are generated (NOA 2.6) To identify, describe, create, and extend a number of patterns (NOA $2.5,2.7$) To identify and represent quantities as equivalent or nonequivalent (NOA 2.8) To use number sentences to represent quantitative relationships (NOA 2.7) Students will analyze change in quantity and quality using patterns. (NOA 2.5) To use concepts based on patterns and place values to add and subtract (NOA 2.5) To identify functional number relationships in real-world situations (NOA 2.1) To represent the result of counting, combining and separating sets of objects using number sentences (NOA 2.1) Students will identify and use equivalent representations of numbers to estimate and compute. (NOA 2.8)	- Model real-life situations that involve addition and subtraction of whole numbers, using objects, pictures and open sentences - Write related fact families for addition and subtraction - Relate the inverse relationship of addition and subtraction facts to 20 - Memorize addition and related subtraction facts to 20 - Solve problems and apply addition and subtraction facts to real world situations - Describe attributes and relationships of objects - Sort, classify, and order objects and numbers based on one and two attributes and describe the rule used - Translate the same pattern from one representation (such as color) to another representation (such as shape) - Describe counting and number patterns - Explore and solve problems involving simple number patterns. - Identify objects with common or different attributes - Identify missing objects in a pattern - Read and write number words to one hundred or beyond; read and write numerals to 999 - Identify and use symbols of inequality ($<,>$,) - Use concrete, pictorial, and verbal examples to demonstrate an understanding that = is a relationship that indicates equivalence - Demonstrate balance or equivalence using models - Identify and use symbols of inequality ($(,,>)$ - Identify and use symbol of inequality (\neq) - Balance simple number sentences by finding the missing numbers - Identify missing numbers to 20 in addition and subtraction sentences and justify the answer - Determine and justify the missing addition/subtraction signs in addition and subtraction sentences - Identify and justify missing numbers in addition and subtraction sentences - Determine whether a number is even or odd using manipulatives - Skip count by 3, 4, and 100 - Identify numbers as odd or even - Identify number words to one hundred - Identify and name place values: hundreds, tens and ones

G2:Q2

TOPIC	OBJECTIVE	ENABLING OUTCOMES: The students will..
Add and Subtract 2- Digit Numbers Length, Capacity, Volume/Time Measurement Money	To use prior understanding of addition and subtraction to develop strategies for multi-digit addition and subtraction (NOA 2.1, 2.2) To develop, discuss, and use efficient, accurate, and various methods to add and subtract multidigit whole numbers (NOA 2.1, 2.2) To develops fluency with efficient procedures for adding and subtracting whole numbers, understand why the procedures work, and use them to solve problems (NOA 2.1, 2.2, 2.3) To determine and use various tools and units to estimate and measure (M 2.1) To use measurement to determine and explain relative size of a given object (M 2.1) To identify and generalize relationships between measurable attributes of plane and solid figures (M 2.1) To use standard units and identify examples of measurements in daily life (M 2.1) To recognize, identify and trade sets of equivalent coins (M 2.3) To express monetary values in oral and written forms (M 2.3)	- Add and subtract 2 digit numbers with regrouping - Add 1 and 2 digit numbers with 3 addends - column addition - Choose addition or subtraction to complete functions tables - Identify missing addends with 2 digit numbers - Choose \& justify the correct operation in a word problem (+, -) - Check subtraction with addition - Round numbers to the nearest 10 - Round to estimate sums of two digit numbers - Use estimation strategies that result in reasonable answers to a problem - Build fluency with addition and subtraction by applying standard algorithms to real world applications - Tell and/or show time to the half hour using both analog and digital clocks - Tell, write, and show time to the quarter hour, to five and one minute intervals - Estimate and/or compute elapsed or projected time in terms of an hour or a minute - Use A.M. and P.M. appropriately - Recognize and apply non standard units of measure - Estimate and measure length and height in centimeters and inches - Compare and order objects according to length - Identify cup, pint, quart, liter and gallon and relate to their use in real life - Compare and order objects according to capacity and/or weight - Demonstrate balance or equivalence using models - Identify pound as a unit of measure and relate use in real life - Supplemental: Read Fahrenheit and Celsius thermometers - Count and show money to one dollar - Find equivalent sets of coins - Use dollar sign - Use decimal point in writing money amounts - Make change up to $\$ 1.00$

G2:Q3

G2:Q4

TOPIC	OBJECTIVE	ENABLING OUTCOMES: The students will.
Fractions	To create portions of equal size to illustrate fractions (NOA 2.3) To apply fractions to draw conclusions about fairness of resources (NOA 2.10)	- Read, write and identify halves, thirds and fourths - Identify more than one equal part of a region, area, or object - Describe the significance of a numerator and denominator - Compare parts of whole object and describe them as closer to zero, one half, or one whole - Identify fractions on a number line (halves, thirds and fourths) - Read, write and identify all fractions - Compare unit fractions - Compare fractions with like denominators - Use visual models to identify and compare fractions - Identify and model fractional parts of a set - Model equivalent fractions (using manipulatives, pictures, graphics, etc.) - Place fractions (halves, thirds, and fourths) on a number line - Demonstrate place values using models - Write expanded numerals in standard form - Expand numerals by identifying the value of each digit in its place - Count, order, compare, and expand numerals to 999 - Identify and name place values to the thousands place - Add and subtract 3 digit numbers without regrouping - Add and subtract 3 digit numbers with regrouping - Round numbers to the nearest hundred - Subtract 3 digit numbers with regrouping through zeroes - fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction - Relate skip counting and repeated addition to multiplication. - Draw arrays to model multiplication - Explore products to 25 - Use models to demonstrate division (Make equal groups and use repeated subtraction.) - Illustrate repeated addition and subtraction on a number line - Use arrays to relate multiplication and division - Identify Roman numerals I, V, and X - Read and write Roman numerals to 30
Number Theory Place Value	To represent three digit numbers as groups of hundreds, tens, and ones in the base ten number system (NOA 2.1)	
	To use concepts based on patterns and place values to add and subtract (NOA 2.3, 2.5, 2.7)	
Multiplication and Division Enrichment	To describe the relationship between multiplication and division (NOA 2.1)	
	To recognize and explore Roman numerals	

VOCABULARY	Number Theory Whole Numbers Fractions Estimation Algebra Geometry Measurement Data Analysis, Statistics, Probability	Attributes; between; compare; digit; just before; just after; number line; ordinal; pattern; roman numeral; strategy; thousands s Column; factor; product; regrouping Fourths; halves; thirds Estimation; number line Associative; balance; commutative; equivalent/non-equivalent; quantity Angle; area; face; flip; perimeter; plane figure; polygon; similar; symmetry; solid; turn side Analog; area; Celsius/ Fahrenheit; change; Degree; Digital; dollar; elapsed time; gallon; gram; half dollar; half past; kilogram; measure; meter; ounce; perimeter; pound; price; time; total; yard equal to; fair/unfair; greater/less than; horizontal; mode; predict; range; Venn diagram; vertical

Resources for Grade Two Math Literacy Connections	
Strand	Book Title
	A Birthday Basket for Tia, by Pat Moran Ocean Parade, by Patricia McCarthy Numbers of Things, by Helen Oxenbury A Thousand Pails of Water, by Ronald Roy Two Hundred Rabbits, by Lonzo Anderson and Adrienne Adams Even Steven \& Odd Todd Making Sense of Census 2000, Scholastic Each Orange had Eight Slices, by Paul Giganti Ninety-nine Pockets, by Jean Myrick How many Snails, by Paul Giganti How Many Feet in the Bed, by Diane Hamry One Hundred Hungry Ants, by Elinor Pinczes. Fractions are Parts of Things, by Richard Dinnis How Many Ways Can you Cut a Pie, by Jane Belk Moncure
Geometry	The Village of Round and Square Houses, by Ann Grifalconi The Button Box, by Margarette S. Reid
Measurement	How Big is a Foot, by Rolf Myller On a Hot, Hot Day, by Nicki Weiss Farmer Mack Measures his Pig, by Toni Bargain for Frances, by Russell Hoban Penelope Gets Wheels, by Esther Peterson

	Where the Sidewalk Ends, by Shel Silverstein Clocks and More Clocks, by Pat Hutchins Alexander Who Used to be Rich Last Sunday, by Judith Viorst

Suggested Cross Curricular and Catholic Social Teaching Links Grade Two

* Students draw maps of their community/communities (neighborhood, parish, school yard, etc.), write address numbers in different ways (One Hundred Grant St., 100 Grant St.). (Art, Social Studies, Math)
* Students graph ways in which people in communities help one another and ways in which they can help their communities (family, school, parish, and neighborhood)). (Religion, Social Studies, Math)
4 Students make string phones with a paper cup at each end; they record and graph sounds heard at $10 \mathrm{ft}, 20$ feet, etc. (Science, Math)
Students plan a food drive. (Religion, Math, Health)
* Students compare pieces of string, one cut 53 inches, the length of a dinosaur's foot, the other the length of the student's foot, and write a paragraph describing their conclusions. (Science, Math)
* Students work together to plan a bus route from their homes to school and compare lengths of routes with one another. (Social Studies, Math)

GRADE 3 ADH STANDARDS

Number Theory, Operations, and Algebraic Thinking (NOA)

NOA.3.1 Use place value understanding and properties of operations to perform multi-digit arithmetic.
NOA.3.2 Understand properties of multiplication and the relationship between multiplication and division.
NOA.3.3 Solve problems involving all four operations, and identify and explain patterns in arithmetic.
NOA.3.4 Compute fluently through 12s tables and apply to real world situations
NOA.3.5 Develop an understanding of fractions as numbers
NOA.3.6 Extend whole numbers, place value, patterns, and notations to include decimals; relate money to decimals
NOA.3.7 Represent and analyze mathematical situations and structures using algebraic symbols
NOA.3.8 Use mathematical models to represent and understand quantitative relationships
NOA.3.9 Use fractions to draw conclusions about fairness and equity of resources

Measurement (M)

M.3.1 Apply appropriate techniques, tools and formulas to determine measurements, including time and money
M.3.2 Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects

Geometry (G)

G.3.1 Analyze characteristics and properties of two and three dimensional geometric shapes and develop mathematical arguments about relationships
G.3.2 Understand concepts of area and perimeter and relate to multiplication and addition
G.3.3 Apply transformations and use symmetry to analyze mathematical situations and solve problems

Data Analysis, Statistics, and Probability (DSP)

DP.3.1 Collect, organize, and display data; select and use appropriate statistical methods to analyze data
DP.3.2 Develop and evaluate inferences and predictions that are based on data
DP.3.3 Understand and apply basic concepts of probability

GRADE 3 KEY FOCUS SKILLS:

- DEVEVLOP UNDERSTANDING OF MULTIPLICATION AND DIVISION; MULTIPLY WITHIN 100
- ADD/SUBTRACT WITHIN 1000
- APPLY MATH COMPUTATIONS AND CONCEPTS TO REAL WORLD SITUATIONS
- DEVELOP AN UNDERSTANDING OF FRACTIONS; READ, WRITE, AND IDENTITY FRACTIONS

MATH FACTS ARE CUMULATIVE SKILLS AND MUST BE CONSISTENTLY REINFORCED AND APPLIED TO REAL WORLD SITUATIONS THROUGHOUT THE YEAR TO ACHIEVE MASTERY.

GRADE 3 - Essential \quad Guided Questions -- What Students Need to Understandings
 Know

Mathematics can be used to describe, understand, and communicate about the world in order to solve problems and make decisions.

Characteristics of a situation or problem influence the choice of numbers, operations, strategies, and tools.

Patterns aid description, understanding, and communication about the world.

Patterns and number relationships can be used to investigate, understand, and solve problems.

Measurement allows description, understanding, and communication about the world.

Attributes and relationships of shapes, objects, and patterns can be used to describe, understand, and communicate about the world.

Data collection and analysis can be used to predict outcomes, solve problems, and make decisions.

What does mathematics reveal about the world?
What situations require the use of mathematical understanding?
How can patterns and properties of operations be used when adding and subtracting?
What is the relationship between multiplication and division?
How can strategies be used to determine the reasonableness of an answer?
How do the characteristics of a problem influence the choice of numbers, operations, strategies, and tools?

How and why are patterns used?
How are patterns and number relationships represented with symbols?
How are tables and equations used to represent, analyze, and extend patterns?

How do patterns help to solve problems and communicate information?
What kinds of strategies help to reveal patterns and number relationships?
How are tables, graphs, and equations used to discover, analyze, and extend patterns and number relationships?

How does the precision required for a measurement influence the choice of strategies and tools?
How is understanding and communication about measurement used to solve problems and make decisions?

How can objects in the natural and human-designed world be identified and described in geometric terms?
How do models and drawings enhance understanding?
How can shared attributes help to define categories of shapes?
How are models and drawings used in problem solving and design?
What factors influence the way data is collected and organized?
How is the reliability of data affected by the source, quantity, and method of collection?
How is the analysis of data used to solve problems?
How is the presentation used to support different kinds of data? Why would one style of graph, chart, or table be more appropriate than another when depicting data?

G3:Q1

TOPIC	OBJECTIVES	ENABLING OUTCOMES: The students w
Number Theory Place Value Subtraction of Whole Numbers Estimation	To represent and order number concepts in verbal and written form (NOA 3.1) To represent four digit numbers as groups of thousands, hundreds, tens, and ones in the base ten number system (NOA 3.1) To use prior understanding of addition and subtraction to develop strategies for multi-digit addition and subtraction (NOA 2.1, 2.2) To develop, discuss, and use efficient, accurate, and various methods to add and subtract multi-digit whole numbers (NOA 2.1, 2.2) To develops fluency with efficient procedures for adding and subtracting whole numbers, understand why the procedures work, and use them to solve problems (NOA 2.1, 2.2, 2.3) To represent the result of counting, combining and separating sets of objects using number sentences (NOA 3.1, 3.3) To identify and represent quantities that are equivalent or non-equivalent (NOA 3.8) To identify and use equivalent representations of numbers based on place value patterns to estimate and compute (NOA 3.6) To express monetary values in oral and written forms (M 3.1) To recognize, identify and trade sets of equivalent coins (M 3.1)	- Read and write number words to one thousand - Identify and name place values to the thousands place - Expand numerals by identifying the value of each digit in its place - Write expanded numerals in standard form - Read and write numerals to 9999 - Count, order, compare, and expand numerals to 9999 - Identify and name place values to the hundred thousands place - Read and write numerals to 999,999 - Count, order, compare, and expand numerals to 999,999 - Add and subtract fluently through 12 s tables; apply to real world applications - Solve problems and apply addition and subtraction facts to real world situations - Add and subtract basic facts within 1000 - Add and subtract six digit numbers - Add and subtract 3 digit numbers with regrouping - Add three or more addends (column addition) - Create story problems using number sentences - Balance number sentences by finding the missing numbers - Apply patterns and properties of operations as strategies to add and subtract including commutative, associative, and distributive properties - Identify missing addends with 2 digit numbers - Identify and use symbols for greater than (>),less than ($火$) and not equal (\neq) - Describe the relationships of place values to regrouping - Subtract 3 digit numbers with regrouping through zeroes - Choose and justify the correct operation in a word problem (+, -) - Identify numbers as odd or even - Round numbers to the nearest hundred; nearest thousand - Use front-end estimation - Estimate sums and differences and describe the method of estimation - Select reasonable answers to an estimation problem - Describe and use estimation strategies that can identify a reasonable answer to a problem when an estimate is appropriate - Subtract amounts of money less than a dollar

	To solve problems involving money (M 3.2)	from amounts greater than a dollar - Use decimal point in writing money amounts - Find equivalent sets of coins - Identify half dollars - Make change to a dollar - Add and subtract sums of money less than a dollar in columns aligning decimal points

G3:Q2

TOPIC	OBJECTIVES	ENABLING OUTCOMES; The students will...
Multiplication and Division Concepts Multiplication and Division Facts Fractions	To use concepts based on patterns and place value to multiply and divide (NOA 3.2) To analyze change in quantity and quality using patterns (NOA 3.1) To use properties of whole numbers to maintain equivalence (NOA 3.8) To identify functional number relationships in real-world situations (NOA 3.8) To identify and represent quantities that are equivalent or non-equivalent (NOA 3.8) To develop understanding of fractions as numbers (NOA 3.9)	- Relate skip counting and repeated addition to multiplication Draw arrays to model multiplication Skip count by 3, 4, and 100 Explore and describe multiplication fact patterns Identify, express and apply the zero properties of multiplication Identify, express and apply the commutative, associative and identity properties of addition and multiplication Illustrate repeated addition and subtraction on a number line Choose multiplication or division to complete functions tables Memorize multiplication facts and related division facts through 12 times table Apply multiplication facts to solve real world problems - Apply properties of operations as strategies to multiply and divide including commutative, associative, and distributive properties Identify and justify missing numbers in multiplication and division facts - Use mental math to multiply by 10, 100, and 1000 Understand a fraction $\mathbf{1} / b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / b$. - Understand a fraction as a number on the number line; represent fractions on a number line diagram Represent a fraction $\mathbf{1 / b}$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $\mathbf{1 / b}$ and that the endpoint of the part based at 0 locates the number $\mathbf{1 / b}$ on the number line. - Represent a fraction a / b on a number line diagram by marking off a lengths $\mathbf{1 / b}$ from 0 . Recognize that the resulting interval has size $\boldsymbol{a} / \boldsymbol{b}$ and that its endpoint locates the number $\boldsymbol{a} / \boldsymbol{b}$ on the number line.

	To express equivalent relationships between decimals and fractions whose denominator is a multiple of ten (NOA 3.6, 3.7)	hundredths •Relate money (pennies and dimes) to decimals Compare and order decimals of tenths and hundredths
		Locate decimals on a number line - Count by tenths and hundredths Write fractions with denominators of 10 or 100 as decimals

\begin{tabular}{|c|c|c|}
\hline Geometry

Problem Solving \& \begin{tabular}{l}
To use measurement to determine and explain relative size of a given objects and measures (M 3.1)

To classify or identify plane figures and solids by common characteristics (G 3.3)

To identify shapes as the same where there are changes in position (G 3.1, 3.2, 3.3)

To recognize and use geometric relationships to solve problems (G 3.1, 3.2, 3.3)

To identify characteristics of a situation or problem influence the choice of numbers, operations, strategies, and tools. (NOA 3.7)

 \&

millimeters, decimeters, kilometers

Memorize conversions for inches, feet, yards

Identify the conversions for feet, yards and miles

- Identify cup, pint, quart, gallon and apply to real life

- Identify pound and ounce as units of measure and relate use in real life

- Identify a liter as 1000 milliliters

- Identify liter and apply to real life

- Compare and order objects according to capacity \& weight

- Identify conversion factors in the metric system

- Read Fahrenheit and Celsius thermometers and describe temperatures as hot, warm, or cold

- Recognize, name, compare, and sort: cube, cylinder, cone sphere, rectangular prism, and pyramid

- Describe plane and solid figures by number of edges and/or faces

- Describe the relationship between plane and solid figures

- Identify and draw points, lines, line segments, and rays

- Classify angles as right, acute or obtuse

- Identify, compare and contrast intersecting, perpendicular and parallel lines

- Identify, describe, classify and draw polygons: quadrilaterals, pentagons, hexagons, octagons and classify triangles according to sides and angles

- Identify congruent figures

- Compute the perimeter of a polygon

- Find the area of squares and rectangles by modeling and counting square units

- Identify ways to tile or tessellate a region or shape using various polygons

- synthesize number and operation concepts to solve complex, multi-step word problems using all four operations

- assess the reasonableness of answers using mental computation and estimation strategies including rounding
\end{tabular}

\hline
\end{tabular}

Resources for Grade Three Math Literacy Connections	
Strand	Book List
Number Theory	How Much is a Million, David M. Schwartz. New York: Morrow, 1985 Anno's Mysterious Multiplying, Jar, Philomel Books, 1983 Too Man Kangaroo Things to Do, Harper Collins, 1996 2X2= Boo a Set of Spooky Multiplication Stories, Holiday House, 1995 Charlotte's Web, E.B. White The $329^{\text {th }}$ Friend, Marjorie Weinman Sharman, New York: Macmillian Publishers, 1992 Sideways Stories from Wayside School, Louis Sacher. New York: Camelot, 1985 Let's Investigate Estimating, Marion Smoothey, Marshall Cavendish Corporation, 1995 Gator Pie, Louise Matthews. Dodd Mead 7 Co. Wayside School is Falling Down, Louis Sacher. NY: Lothrop, Lee \& Shephard, 1989 Fractions are Parts of Things, J. Richard Dennis. NY: Harper Collins Children's Books, 1972
Algebra	Caps for Sale, Esphyr Slobodkina Scholastic The I Hate Mathematics! Book by Marilyn Burns. Little, Brown and Co., 1975 20,000 Baseball Cards Under the Sea. John Buller \& Susan Schade. NY: Random House, 1991. Goldilocks and the Three Squares
Geometry	A Light in the Attic (Shapes, p. T1), Shel Silverstein, Harper \& Row The Greedy Triangle, Marilyn Burns: Scholastic, 1994 Right Angles: Paper Folding Geometry, Jo Phillips: Thomas Crownwell Co., 1992. Grandfather Tang's Story, Ann Tompert
Measurement	\$1.00 Word Riddle Book, Marilyn Burns. Cuisenaire Inch by Inch, Leo Lionn: Astorhmor, 1960 A Quarter from the Tooth Fairy, Carne Holtzman, Scholastic How Much is that Guinea Pig in the Window? By Joanne Rocklin, Scholastic Inc.

Suggested Cross Curricular and Catholic Social Teaching Links

Grade Three

* Students write a paragraph comparing and contrasting two solid figures using words like face and edge. (Language Arts, Math)
* Students read a book like Selina and the Bear Paw Quilt and create artwork using patterns. (Language Arts, Art, Math)
* Students create fair and unfair spinners for games and discuss the importance of honesty and justice.
(Math, Art, Religion

GRADE 4 ADH STANDARDS

Number Theory, Operations, Algebraic Thinking (NOA)
NOA.4.1 Use place value understanding and properties of operations to perform multi-digit arithmetic.
NOA.4.2 Understand meanings of the 4 operations and how they relate to one another to solve problems
NOA.4.3 Use numbers and their properties to compute fluently and to estimate measures and quantities reasonably
NOA.4.4 Understand, describe, and apply patterns and functional relationships to real world situations
NOA.4.5 Gain familiarity with factors and multiples
NOA.4.6 Use algebraic symbols to determine equivalence and solve problems
NOA.4.7 Extend understanding of fraction equivalence and ordering.
NOA.4.8 Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.
NOA.4.9 Understand decimal notation for fractions, and compare decimal fractions.

Measurement (M)

M.4.1 Develop and apply appropriate techniques, tools and formulas to estimate and determine measurements
M.4.2 Solve problems involving money, measurement, and conversion of measurements from a larger unit to a smaller unit.

Geometry (G)

G.4.1 Analyze characteristics and properties of two and three dimensional geometric shapes and develop mathematical arguments about relationships and communicate rationale
G.4.2 Understand concepts of angle and measure angles.
G.4.3 Specify locations and describe spatial relationships using coordinate geometry and other representational systems
G.4.4 Apply transformations and use symmetry to analyze mathematical situations

Data Analysis, Statistics, \& Probability (DSP)
DSP.4.1 Select and use appropriate statistical methods to analyze data
DSP.4.2 Analyze data sets to form hypotheses and make predictions
DSP.4.3 Understand and apply basic concepts of probability
DSP.4.4 Develop and evaluate inferences and predictions that are based on data

GRADE 4 KEY FLUENCIES

- DEVELOP UNDERSTANDING AND FLUENCY OF MULTI-DIGIT MULTIPLICATION \& DIVIDING TO FIND QUOTIENTS INVOLVING MULTI-DIGIT DIVIDENDS
- ADD/SUBTRACT WITHIN 1,000,000
- DEVEVLOP AN UNDERSTANDING OF FRACTION EQUIVALENCE
- BUILD UNDERSTANDING OF ADDITION AND SUBTRACTION OF FRACTIONS WITH LIKE DENOMINATORS; MULIPLY FRACTIONS BY WHOLE NUMBERS

GRADE 4 - Essential Understandings	Guided Questions -- What Students Need to Know
Mathematics can be used to describe, understand, and communicate about the world in order to solve problems and make decisions. Characteristics of a situation or problem influence the choice of numbers, operations, strategies, and tools. Patterns aid description, understanding, and communication about the world. Patterns and number relationships can be used to investigate, understand, and solve problems. Measurement allows description, understanding, and communication about the world. Geometry has many real-world applications including design, architecture, and art. Data collection and analysis can be used to predict outcomes, solve problems, and make decisions.	What does mathematics reveal about the world? How is mathematics used in the everyday world? What situations require the use of mathematical understanding? How can concrete materials model mathematical situations? Using place value, what does the position of each digit reveal about its value? How do the characteristics of a problem influence the choice of numbers, operations, strategies, and tools? What strategies help determine if a solution is reasonable, accurate, and complete? How and why are patterns used? How are patterns and number relationships represented symbolically? How are tables and equations used to represent, analyze, and extend patterns? How do patterns help to solve problems and communicate information? What kinds of strategies help to reveal patterns and number relationships? What is the meaning of a variable in an equation or number expression? How are strategies used to assess the reasonableness of an answer? How do the characteristics of objects and events influence the choice of measurement strategies and tools? How is the understanding and communication about measurement used to solve problems and make decisions? How do the characteristics of geometric figures influence their use in designs? How are models and drawings used in problem solving and design? How is the analysis of data used to solve problems? How is the presentation of data used or misused to support an outcome or decision?

G4:Q2

TOPICS	OBJECTIVES	ENABLING OUTCOMES: The students will...
Multiplication Facts by 1 \& 2 Digit Numbers	To use factors to explore, represent and classify numbers (NOA 4.1) To write equations to express relationships between numbers (NOA 4.6) To recognize, create and extend numerical and geometric patterns, using concrete materials, number lines, symbols, tables and words (NOA 4.4) To use factors to explore, represent and classify numbers (NOA 4.5) To use number patterns, basic facts, arrays, and place value models to multiply and divide whole numbers (NOA 4.1) To identify whole number properties and apply them to whole number operations and	- Multiply two two-digit numbers, using strategies based on place value and the properties - Memorize and apply divisibility rules for 2,5, 10 - Square a whole number - Represent in pictorial form a 2×2 square - Identify the written form n^{2} - Multiply two and three digit numbers by a one digit number with regrouping - Use exponents to the power of 2 - Use equations to describe the rules for number patterns - Use equations to model word problems - Use calculators to explore and create number patterns - Explore and describe multiplication fact patterns - Describe and write the rule for number, color, rhythmic and symbolic patterns - Identify and use the inverse relationships of multiplication and division to solve and check problems - Solve practical problems and extend patterns involving 10 and 100 more and less than a number - Recognize and identify prime and composite numbers to 100

Division	algorithms (NOA 4.2) To use place value concepts, number patterns, and number properties to develop estimation and computation strategies (NOA 4.3) To use number patterns, basic facts, arrays, and place value models to multiply and divide whole numbers (NOA 4.1) To use factors to explore, represent and classify numbers (NOA 4.5)	- Extend and compare arithmetic and geometric sequences - Make generalizations about patterns and relationships and test those generalizations - Multiply to find special products with multipliers that are multiples of $10,100,1000$ - Multiply four-digit numbers by a one-digit multiplier, two and three digit numbers by a two-digit multiplier - Divide three-digit dividends by multiples of 10 - Divide three-digit dividends by a one-digit divisor to find quotients of two or three places with zeros and remainders - Record division using an algorithm (long division) - Divide multiples of 10, 100,1000 and 10,000 by multiples of 10 - Identify and use the inverse relationships of multiplication and division to solve and check problems - Model and interpret division with remainders - Calculate quotients with and without remainders for 2-, 3-, and 4-digit dividends and 1-digit divisors, based on place value, the properties of operations, and/or the relationship between multiplication and division - Use arrays and explore using the distributive property $[10 \times(4+5)=(10 \times 5)+(10 \times 4)]$ to estimate, multiply and divide two and three digit numbers by one-digit factors - Recognize and apply the distributive property of multiplication - Use compatible numbers to make reasonable estimates - Estimate products and quotients and describe the method of estimation - Describe and use estimation strategies that can identify a reasonable answer to a problem when an estimate is appropriate - Use clustering to estimate sums - Determine and discuss the reasonableness of an answer and explain why a particular estimation strategy will result in an over or underestimate - Write and solve multi-step word problems involving estimation - Divide four-digit dividends by a one digit divisor to find three and four digit quotients with zeros and remainders - Divide two- and three-digit dividends by two-digit divisors to find one digit quotients with and without remainders - Use order of operations to evaluate arithmetic expressions with parentheses

		\bullet \bullet - \quadIdentify the Least Common Multiple (LCM) given pairs of numbers less than or equal to 10 Identify the Greatest Common Factor (GCF) given pairs of numbers up to 81

G4:Q3

TOPICS	OBJECTIVES	ENABLING OUTCOMES: The students will...
Fractions and Probability Fractions	To model, identify, compare fractions, and express them in equivalent forms (NOA 4.7) To extend whole number place value patterns, models, and notations to include decimals (NOA 4.9) To extend place value concepts and number properties to addition and subtraction of decimal numbers (NOA 4.9) To compute with fractions (NOA 4.8) To extend understanding of fraction equivalence and ordering (NOA 4.7)	- Read, write and identify all fractions - Identify and model fractional parts of a set - Find fractional parts of numbered groups - Use division to find a fractional part of a set - Identify and find the simplest form of a fraction - Write fractions in lowest terms - Identify and model equivalent fractions (using manipulatives, pictures, graphics, etc.) - Find and generate fractions that are equivalent using models - Find equivalent fractions using multiplication and division - Identify mixed numbers - Use visual/virtual models to identify and compare fractions - Use models to change an improper fraction to a mixed number - Locate and place fractions on a number line - Apply the concepts of Greatest Common Factor and Least Common Multiple to fractions - Use the Least Common Multiple to identify the lowest common denominator of a set of fractions - Add and subtract like fractions - Solve problems involving addition and subtraction of fractions with like denominators - Compare proper fractions with unlike denominators - Add and subtract fractions with unlike denominators - Add and subtract two fractions where one denominator is a multiple of the other - Explain why a fraction a / b is equivalent to a fraction $(\boldsymbol{n} \times \boldsymbol{a}) /(\boldsymbol{n} \times \boldsymbol{b})$ by using visual fraction models, with attention to how the numbers and sizes of the parts differ even though the two fractions themselves are the same size; use this principle to recognize and generate equivalent fractions. - Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $\mathbf{1 / 2}$. - Recognize that comparisons are valid only when the two fractions refer to the same whole. - Record the results of comparisons with symbols $>$, $=$, or <, and justify the conclusions, e.g., by using a visual

Decimals	To extend place value concepts and number properties to addition and subtraction of decimal numbers (NOA 4.9)	fraction model. - Recognize that comparisons are valid only when the two fractions refer to the same whole - Recognize and convert improper fractions and mixed numbers - Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation - Model, read and write decimals in tenths and hundredths - Locate decimals on a number line - Count by tenths and hundredths - Annex zeroes to create equivalent decimal numbers - Write decimal numbers to express fractions with denominators of 10 and 100 - Relate decimals in tenths to fractions, and mixed numbers - Compare and order decimals of tenths and hundredths (use symbols <, >, $=$, and \neq) - Relate money (pennies and dimes) to decimals - Round decimal numbers to the nearest tenth and whole number - Round decimal numbers to the nearest hundredth - Estimate decimal sums and differences using rounding - Construct and use models and pictures to add and subtract decimals - Add and subtract decimals to hundredths - Model, read and write decimals to thousandths place in standard form and as number words - Identify place value in decimal numbers and write decimals in expanded form. (EX. $61.34=60+1+0.3+$ 0.04) - Use models and pictures to estimate reasonable answers when adding or subtracting decimals, fractions, and mixed numbers - Write and solve multi-step word problems with fractions, including problems with extraneous information - Model and demonstrate ratios through the use of concrete objects and pictures using ratios - Describe the relationship between decimals, fractions and percents - Use models, pictures, and number patterns to solve simple problems involving ratio and proportions

Geometry Graph and Interpret Data	To describe geometric properties of plane and solid figures (G 4.1) To identify, draw and describe elements needed to explain spatial relationships (G 4.3) To describe geometric properties of plane and solid figures (G 4.1) To identify and generalize relationships between measurable attributes of plane and solid figures (G 4.1) To determine and use various tools and units to estimate and measure (M 4.1) To use measurement to determine and explain relative size of a given objects and measures (M 4.2) To collect, organize and describe data (DSP 4.1) To represent numerical relationships on a coordinate grid (NOA 4.7)	and gram and relate use in real life - Solve practical problems that involve estimation and measurement of weight - Compare and order objects according to weight - Identify conversion factors in the metric system - Identify and use kilogram and ton - Build, draw, create, describe, and classify two- and three-dimensional figures - Sort polygons and solids by using characteristics such as the relationship of sides (parallel, perpendicular), kinds of angles (right, acute, obtuse), symmetry, and congruence - Describe similarities and differences of two and three dimensional shapes in the environment using physical features such as number of sides, number of angles, lengths of sides and straight and curved parts - Describe solid figures using faces, edges, and vertices - Identify and draw points, lines, line segments, and rays - Identify, compare and contrast intersecting, perpendicular and parallel lines - Classify angles as right, acute or obtuse - Identify translations, rotations, and reflections - Explain the results of dividing, combining, and transforming shapes and the effects of slides, flips, and turns - Identify ways to tile or tessellate a region or shape using various polygons - Analyze two-dimensional shapes and determine lines of symmetry and congruence - Identify, describe and classify triangles according to sides and angles - Identify, describe, classify and draw polygons: quadrilaterals, pentagons, hexagons, octagons - Compute perimeter of a polygon using the formula - Find the area of squares and rectangles - Develop and apply the formula for finding area of squares and rectangles - Describe relationships between the lengths of sides of rectangles and their areas and perimeters; generalize the patterns as simple formulas - Find the volume of rectangular prisms by modeling and counting cubic units - Find strategies for estimating and measuring the perimeters and areas of irregular shapes - Identify and find the radius and diameter of a circle - Identify and estimate the circumference of a circle - Use a variety of ways to collect, organize, record, analyze, and interpret data and identify patterns and trends

GRADE 4 - Resources for the Grade Four Math Literacy Connections	
Strand	Book List
Number Theory	Math Blaster (software) Remainder of One, Elinor J. Pinczes, Scholastic, 1993 Math Curse, Jim Scieszka \& Lane Smith. Viking, 1995, (The Penquin Group) Anne's Hat Trick, Philomel Books, 1984 The Science Book of Numbers, Jack Challoner, Gulliver Books, 1992 A Million Fish, More or Less, Patricia McKissack. Alfred A. Knopf, New York, 1992 If You Made a Million, David Schwartz, 1989 More for me, Software: Fraction Factory Gator Pie, Louise Mathews. Dodd Mead, 1979
Algebra	Game: Battleship, Milton Bradley Geometry Measurements Graphing

Suggested Cross Curricular and Catholic Social Teaching Links

Grade Four

Students take their heart beats and create equations based on how often their heart beats in a minute, five minutes, etc. (Science, Math)

* Students organize a fund raising event for charity setting a goal; they measure their progress toward that goal on a graph in terms of percents. (Religion, Math)

GRADE 5 ADH STANDARDS

Number Theory, Operations, Algebraic Thinking (NOA)
NOA.5.1 Use place value understanding and properties of operations to perform multi-digit arithmetic.
NOA.5.2 Understand meanings of operations and how they relate to one another to solve problems
NOA.5.3 Use numbers and their properties to compute flexibly, fluently, and make reasonable estimates
NOA.5.4 Analyze patterns, relations, and functions
NOA.5.5 Represent and analyze mathematical situations and structures using algebraic symbols to determine equivalence and solve problems
NOA.5.6 Analyze change in various contexts
NOA.5.7 Use equivalent fractions as a strategy to add and subtract fractions.
NOA.5.8 Apply and extend previous understandings of multiplication and division to multiply and divide fractions.

Measurement (M)

M.5.1 Develop and apply appropriate techniques, tools and formulas to estimate and determine measurements
M.5.2 Convert like measurement units within a given measurement system.

Data Analysis, Statistics, \& Probability (DSP)

DSP.5.1 Formulate questions that can be addressed with data; collect, organize, and display relevant data to answer them using appropriate statistical \& graphical methods
DSP.5.2 Analyze data sets to form hypotheses and make predictions
DSP.5.3 Understand and apply basic concepts of probability
DSP.5.4 Develop and evaluate inferences and predictions that are based on data

Geometry (G)

G.5.1 Analyze properties and characteristics of two-and three-dimensional shapes to describe relationships, communicate ideas and solve problems
G.5.2 Use visualization, spatial reasoning, and geometric modeling to solve problems

GRADE 5 KEY FLUENCIES:

- MULTI-DIGIT MULTIPLICATION \& DIVISION
- FLUENCY WITH ADDITION \& SUBTRACTION OF FRACTIONS
- EXTEND UNDERSTANDING OF MULTIPLICATION \& DIVISION OF FRACTIONS
- EXTEND DIVISION TO 2 DIGIT DIVISORS; INTEGRATE DECIMAL AND FRACTIONS INTO PLACE VALUE SYSTEM
- DEVEVLOP FLUENCY WITH WHOLE NUMBER AND DECIMAL OPERATIONS

GRADE 5 - Essential Understandings

Mathematics can be used to describe, understand, and communicate about the world in order to solve problems and make decisions.

Characteristics of a situation or problem influence the choice of numbers, operations, strategies, and tools.

Patterns aid description, understanding, and communication about the world.

Patterns and number relationships can be used to investigate, understand, and solve problems.

Measurement allows description, understanding, and communication about the world.

Geometry has many real-world applications including design, architecture, and art.

Data collection and analysis can be used to predict outcomes, solve problems, and make decisions.

Guided Questions -- What Students Need to Know

What does mathematics reveal about the world?
What situations require the use of mathematical understandings?
How does mathematics enable people to work with things they cannot see?
How do concrete materials model mathematical situations?
What does the position in a multi-digit number reveal about its value?
How do the characteristics of a situation influence the choice of numbers, operations, strategies, and tools?
How is a solution determined to be reasonable, accurate, and complete?
Why are comparisons of two fractions only valid when they refer to the same whole?

How and why are patterns used?
How are patterns and number relationships represented symbolically?
What kinds of patterns can be found in natural and human-designed environments?
How are tables and equations used to represent, analyze, and extend patterns?

How do patterns help people to solve problems and communicate information?
What kinds of strategies help to reveal patterns and number relationships? How are function tables and equations used to discover, analyze, and extend patterns and number relationships?

How is measurement used to quantify information about objects and events? How do the characteristics of objects and events influence the choice of measurement strategies and tools?
How does the precision required for a measurement influence the choice of strategies and tools?
How is the understanding and communication about measurement used to solve problems and make decisions?

How do the characteristics of geometric shapes and figures influence their use in aesthetic and functional designs?
How are geometric shapes and relationships manipulated to create a visual or emotional effect?
How are models and drawings used in problem solving and design?
What factors influence the way data is collected and organized?
How is the reliability of data affected by the source, quantity, and method of collection?
How is the analysis of data used to solve problems?
How is the presentation of data used or misused to support different points of view?

G5:Q1

Distributive Property	To use number patterns, basic facts, arrays, place value models	answer and explain why a particular estimation strategy will result in an over or underestimate - Estimate decimal quotients using compatible numbers - Use a number line to compare and order integers - Solve problems involving finding 10,000, and 1000 more or less than a number - Add and subtract whole numbers (up to 9 digits) presented in both horizontal and vertical form, including column addition.
Multiplying 1 and 2 Digits	multiply and divide (NOA 5.2)	- Add and subtract decimals to the ten thousandths place - Develop strategies, using place value relationships, inverse operations, and the commutative, associative, and distributive properties to simplify computation with two-, three-, and four-digit numbers and money amounts
1 Digit Divisors		- Identify and use the inverse relationships of multiplication and division to solve and check problems - Determine the proper operation to solve a problem and justify the reasoning - Express remainders in division as fractions - Multiply and divide decimals by whole numbers - Use the short division algorithm (to follow mastery of long division) - Multiply and divide decimals by decimals - Change a fraction to a decimal using division
		- Add, subtract, and multiply, and divide decimals through the hundredths place using concrete models or drawings and strategies based on place value, properties of operations, rounding, and/or the relationship between addition and subtraction and explain the reasoning - Use arrays and explore using the distributive property $[10 \times(4+5)=(10 \times 5)+(10 \times 4)]$ to estimate, multiply
		- Recognize and apply the distributive property of multiplication - Estimate products and missing factors using multiples of $10,100,1000$ - Use mental math to multiply by 10,100 , and 1000 - Use mental math to multiply by multiples of 10,100 , and 1000
		- Multiply to find special products with multipliers that are multiples of $10,100,1000$ - Multiply four digit numbers by a one digit multiplier, two and three digit numbers by a two digit multiplier and three digit numbers by a two digit multiplier - Describe the property of zero in multiplication and its implication in division

		Divide multiples of $10,100,1000$ and 10,000 by multiples of 10,100, and 1000
-Divide multi-digit dividends by one and two digit divisors to find multi-digit quotients with zeros and remainders		
	Solve problems involving finding 10, 100. And 1000 more and less than a number	
•letermine the proper operation to solve a problem		
and justify the reasoning		

G5:Q2

Measurement	To determine and use various tools and units to estimate and measure (M5.1)	and unlike fractions and mixed numbers - Use equivalence and substitution with common denominators when adding and subtracting - Add and subtract like and unlike fractions and mixed numbers expressing answers in simplest form - Use models and pictures to estimate reasonable answers when adding or subtracting decimals, fractions, and mixed numbers - Use models to change an improper fraction to a mixed number - Recognize that multiplication by a unit fraction is equivalent to dividing by the fraction's denominator - Construct and use models and pictorial representations to multiply common fractions and mixed numbers - Use models to divide whole numbers by fractions and fractions by whole numbers - Model and describe when products or quotients with fractions and decimals can yield a larger or smaller result than either factor - Multiply and divide fractions, whole numbers and mixed numbers - Subtract mixed numbers with renaming - Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers - Interpret a fraction as division of the numerator by the denominator - Interpret multiplication of fractions as scaling (resizing) by comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication - Explain why multiplying a given number by a fraction greater than 1 results in a product greater than the given number - Explain why multiplying a given number by a fraction less than 1 results in a product smaller than the given number - Recognize that multiplication by a unit fraction is equivalent to dividing by the fraction's denominator - Identify reciprocal numbers - Apply reciprocal numbers to division of a whole number by a fraction - Write whole number division problems in fraction form and round the fraction form to estimate an answer to a division problem - Multiply and divide fractions, whole numbers and mixed numbers - Use cancellation in multiplication of fractions - Solve real-world problems involving multiplication of fractions and mixed numbers, (e.g., by using visual fraction models or equations)

To use measurement to determine and explain the relative size of given objects and measures (M 5.1) To use standard units to identify and express examples of measurement in daily life (M5.1)	- Interpret division of a whole number by a unit fraction (e.g., $4 \div 1 / 5=20$ because $20 \times 1 / 5=4$) and a unit fraction by a whole number or non-zero number, compute, and apply to real-world problem solving - Estimate and measure length and height in millimeters, decimeters, kilometers - Define, identify, use and relate benchmarks in metric and standard systems - Use the appropriate customary and metric units and tools for measuring volume and capacity - Define, identify, use and relate benchmarks of capacity - Explain the difference between mass and weight - Add and subtract measurements with regrouping recording answers in simplified form - Identify and use kilogram and ton - Use the appropriate customary and metric units and tools for measuring weight - Define, identify, use and relate benchmarks of weight/mass - Use the appropriate customary and metric units and tools for measuring temperature - Identify the conversions for feet, yards and miles - Identify conversion factors in the metric system - Compare and convert measures of capacity - Identify conversion for pounds and ounces - Read Fahrenheit and Celsius thermometers including temperatures below zero - Find the change in temperature when one temperature is below zero and the other above

G5:Q3

TOPICS	OBJECTIVES	ENABLING OUTCOMES; The students will...
Simplifying and Evaluating Expressions	To recognize, use and simplify arithmetic and algebraic expressions (NOA 5.5)	- Fluently multiply multi-digit whole numbers using the standard algorithm - Evaluate variable expressions that involve a single operation
Integers and Absolute Value	To explore numbers less than zero and extend the number line to illustrate integers (NOA 5.1)	- Use order of operations to evaluate single variable algebraic expressions with parentheses - Explain the difference between algebraic and arithmetic expressions - Use variables to represent quantities in expressions and number sentences
Writing and Solving		- Write and evaluate algebraic expressions with two variables
Equations	To recognize and demonstrate equivalence using number properties (NOA 5.4)	- Identify the absolute value of an integer - Identify opposite integers - Use a model to add and subtract integers
Integers and Functions	To write expressions, equations and inequalities to express relationships between numbers (NOA 5.1) To represent numerical relationships on a coordinate grid (NOA 5.4)	- Identify, express and apply the commutative and associative properties of whole numbers and identify properties of addition and multiplication - Use commutative and associative properties to solve problems, estimate, and compute - Demonstrate equivalence with the commutative, distributive and associative properties of whole numbers - Demonstrate the equivalence of both sides of an equation as the same value is added, subtracted, multiplied, or divided on each side
Fractions	To investigate how a change in one variable change in second variable (NOA 5.6)	- Model and solve one step equations using materials that model equivalence - Represent mathematical relationships using variables in expressions, equations and inequalities
Graphing and Equations	To identify and describe situations with constant or varying rates of change and compare them (NOA 5.6)	- Describe how a change in one variable relates to a change in a second variable in a practical situation
	Use equivalent fractions as a strategy to add and subtract fractions (NOA	- Determine the nature of changes in linear relationships using graphs, tables, and equations - Use a table to explore functions and graph them
Measurements of Central Tendency	Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction (NOA	- Add and subtract fractions with unlike denominators by replacing given fractions with equivalent fractions to produce an equivalent sum or difference with like denominators - Solve word problems involving addition and subtraction of fractions referring to the same whole,
Ratios-Percents Probability	To use tables, graphs and equations to represent mathematical relationships and solve real-world equations (DSP 5.2, 5.4)	including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem - Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an

		- Express probability as a fraction - Conduct probability experiments and express the probability based on possible outcomes - Identify possible outcomes and express the likelihood of events as a fraction - Make generalizations about patterns and relationships and test those generalizations

Resources for the Grade Five Math Literacy Connections	
Strand	Book Titles
Number Theory	Is a Blue Whale the Biggest Thing There Is? By Robert Wells, Whitman \& Company, 1993 Fractions, by David Steinecker. Benchmark Books, 1996 Locks, Crocs \& Skeeters, by Nancy Winslow Parker. Greenwillow Books, 1996 Accidents May Happen, by Charlotte Fultz Jones. Delacorte Press, 1996 The Librarian Who Measured the Earth, by Kathryn Lasky. Little, Brown \& Co., 1994
Algebra	Logical reasoning puzzle books
Geometry	Pentominoes, Tangrams, Geoboards
Whole Numbers	Let's Investigate Estimating by Marion Smoothey. Marshall Canvendish Corporation, 1995 Larson Leapfrog Math, Meridian Creative Group (software)
Measurements	Spaghetti and Meatballs for All! By Marilyn Burns. Scholastic, $1997 . ~ G e o b o a r d s ~$

Suggested Cross Curricular and Catholic Social Teaching Links

Grade Five

Students create equations based on the calories found in different kinds of food and create menus that are nutritious. (Math, Health)

* Students will create and measure the effects of plans to conserve energy, reflecting an understanding of the call to be stewards of this earth. (Science, Math, Religion)

GRADE 6 ADH STANDARDS

Number Theory \& Algebraic Concepts (NAC)

NA.6.1 Understand meanings of operations and how they relate to one another to solve real world problems
NA.6.2 Compute fluently with multi-digit numbers and find common factors and multiples
NA.6.3 Represent and analyze quantitative relationships in a variety of ways to solve problems
NA.6.4 Analyze patterns, relations, functions, and change in various contexts
NA.6.5 Represent and analyze mathematical situations and structures using algebraic symbols to determine equivalence and solve problems
NA.6.6 Understand ratio concepts and use ratio reasoning to solve problems.
NA.6.7 Apply and extend previous understandings of multiplication and division to divide fractions by fractions.
NA.6.8 Apply and extend previous understandings of numbers to the system of rational numbers.
NA.6.9 Reason about and solve one-variable equations and inequalities.
NA.6.10 Represent and analyze quantitative relationships between dependent and independent variables.

Geometry (G)

G.6.1 Solve real-world and mathematical problems involving area, surface area, and volume.
G.6.2 Specify locations and describe spatial relationships using coordinate geometry and other representational systems
G.6.3 Use visualization, spatial reasoning, and geometric modeling to solve problems

Measurement (M)

M.6.1 Apply appropriate techniques, tools and formulas to determine measurements to solve real world problems

Data Analysis, Statistics, \& Probability (DSP)

DSP.6.1 Formulate questions that can be addressed with data; collect, organize, and display relevant data to answer them using appropriate statistical and graphical methods
DSP.6.2 Analyze data sets to form hypotheses and make predictions
DSP.6.3 Develop understanding of statistical variability
DSP.6.4 Summarize and describe distributions.

GRADE 6 KEY FLUENCIES:

- COMPLETE UNDERSTANDING OF MULITPLICATION \& DIVISION FLUENCY
- COMPLETE UNDERSTANDING OF ADDITION, SUBTRACTION, MULTIPLICATION, \& DIVISION OF FRACTIONS FLUENCY
- CONNECT RATIO \& RATE TO WHOLE NUMBER MULTIPLICATION \& DIVISION
- EXTEND THE NOTION OF NUMBER TO THE SYSTEM OF RATIONAL NUMBERS TO INCLUDE NEGATIVE NUMBERS
- WRITING, INTERPRETING, AND USING EXPRESSIONS AND EQUATIONS
- DEVELOP UNDERSTANDING OF STATISTICAL THINKING

GRADE 6 - Essential Understandings

Mathematics can be used to describe, understand, and communicate about the world in order to solve problems and make decisions.

Characteristics of a situation or problem influence the choice of numbers, operations, strategies, and tools.

Patterns aid description, understanding, and communication about the world.

Patterns and number relationships can be used to investigate, understand, and solve problems.

Geometry has many real-world applications including design, architecture, and art.

Measurement allows description, understanding, and communication about the world.

Data collection and analysis can be used to predict outcomes, solve problems, and make decisions.

Guided Questions -- What Students Need to Know

What does mathematics reveal about the world?
What situations require the use of mathematical understandings?
How do the characteristics of a situation influence the choice of numbers, operations, strategies, and tools?
How is a solution determined to be reasonable, accurate, and complete?
How and why are patterns used and where can they be found in humandesigned environments?
How are patterns and number relationships represented symbolically (such as consecutive odd numbers)?
How are tables, graphs, and equations used to represent, analyze, and extend patterns?
How are patterns used to solve problems and communicate information?
What kinds of strategies help reveal patterns and number relationships?
How does the precision required for a measurement influence the choice of strategies and tools?
How is the understanding and communication about measurement used to solve problems and make decisions?

What factors influence the way data is collected and organized?
How is the analysis of data used to solve problems?
How is the reliability of data affected by the source, quantity, and method of collection?
How is the presentation of data used or misused to support different points of view?

Whole Numbers and Decimals	and computation strategies (NAC 6.4)	- Convert decimals to fractions
	To apply place value concepts and number properties to the	- Estimate and predict reasonable answers and recognize and explain when an estimate will be more or less than an exact answer
	addition, subtraction, multiplication and division of	- Explain orally and in writing when a situation requires an exact answer or when an estimate is sufficient
	multi-digit numbers (NAC 6.2)	- Develop, describe, and use a variety of ways to estimate and calculate with large numbers and connect the strategies to powers of ten
	To use factors to explore, represent and classify numbers (NAC 6.2)	- Use benchmarks to understand the relative magnitude of numbers
Number Theory		- Use place value concepts, number patterns, the number line and the commutative, associative, and distributive properties to develop estimation and computation strategies
	To model , identify and express equivalent forms of numbers expressed as whole numbers, fractions and mixed numbers	- Select and apply the most suitable estimation strategy: rounding, clustering, front end (with adjustment), compatible numbers, compensation
	(NAC 6.8)	- Recognize place value patterns when multiplying and dividing decimals by powers of 10
	To use models, number lines, scales and a coordinate grid to represent and illustrate decimal	- Use the distributive property $[10 \times(4+5)=(10 \times 5)+(10$ $x 4)$] to estimate, multiply and divide multi-digit numbers by one-digit factors
	numbers and to express them in equivalent forms (NAC 6.3)	- Identify and use the inverse relationships of multiplication and division to solve and check problems
		Determine the proper operation to solve a problem and justify the reasoning
	mixed numbers using models, pictures and number sentences (NAC 6.7)	- Locate, order and compare decimals on number lines, scales and the coordinate grid Multiply and divide decimals by decimals
		- Determine and write the prime factorization of any whole number
		- Represent numbers by using exponents
		- Change exponent form to standard numeral, write as repeated factors and vice versa
Fractions		- Use factors of composite numbers, powers of ten and divisibility rules to find products and missing factors - Memorize and apply the divisibility rules for $2,3,4,5,6$, 8,9 , and 10
		- Explain orally and in writing when a situation requires an exact answer or when an estimate is sufficient
	To apply and extend previous understandings of multiplication and division to divide fractions by fractions (NAC 6.3)	- Locate, order and compare fractions on number lines, scales and the coordinate grid - Determine the decimal equivalents of fractions - Convert fractions to decimals, decimals to fractions, and fractions to percents
		- Change a fraction to a decimal using division
	To use models and pictorial representations to develop concepts and methods by which	- Write fractions as terminating and repeating decimals - Convert repeating decimals to fractions

G6:Q2

G6:Q3

Spatial Relationships		- Make and test conjectures about geometric relationships - Classify polygons according to their transformational properties - Use the relationships of sides and angles to classify sets of polygons - Make and test conjectures about side and angle relationships and congruence - Identify, compare and contrast regular and irregular polygons - Use angles to measure and classify polygons - Identify and classify angles as complementary and supplementary - Use a protractor to measure angles - Use the rectangle as a basic shape to model and develop formulas for the area of triangles, parallelograms, trapezoids and circles - Use a compass to draw a circle - Find the area of a circle - Find the circumference of a circle using a formula - Identify and measure the parts of a circle (radius, diameter, chord, central angle) - Describe the relationships between and among radius, diameter, circumference and area of a circle - Identify the meaning and value of pi - Determine the volume of rectangular solids - Describe the relationships between the measures of area of two-dimensional objects and volume of three dimensional objects - Develop and use formulas to determine the volume of pyramids and cylinders - Calculate the surface area of a rectangular prism - Represent the surface of three-dimensional objects through the use of two-dimensional nets - Identify rotational symmetry and points of rotation - Use spatial reasoning location and geometric relationships to solve problems

G6:Q4

To review and summarize critical fraction concepts: simplify, rename, convert mixed to improper to mixed, add, subtract, multiply, and problem solving Review and summarize critical understanding of the relationship between fraction, decimal, and percents	trends - Use technology to create spreadsheets and convert information into graphs - Use extended numeric, geometric and statistical patterns to identify trends and justify predictions - Differentiate between numerical and categorical data and their appropriate representations - Analyze patterns and data to make generalizations and predictions - Describe the shape of data sets using measures of spread (range and outliers) and central tendency (mode, median, and mean) - Recognize that changes in a data set can affect the mode, median, mean, and range - Recognize misleading data - Solve problems involving addition and subtraction of fractions and mixed numbers, and express answers in simplest form - Make estimates appropriate to a given situation - Analyze what effect the estimation method used has on the accuracy of results

Suggested Cross Curricular and Catholic Social Teaching Links

Grade Six

Students read From the Mixed-Up Files of Mrs. Basil E. Frankweiler and create proportions that measure the difference in the cost of subway fare, food, etc. described in the book with current day costs and make generalizations about the increase in the cost of living from the 1960's to the present. Online resources should be used. (Math, Language Arts)

* Students create a budge for a service project, such as providing a meal for a local soup kitchen. (Religion, Math)

Number and Operations - Grade Seven		
Essential Understandings		Guided Questions -- What Students Need to Know
Mathematics can be used to desc and communicate about the world problems and make decisions. Characteristics of a situation or prob choice of numbers, operations, st	understand, rder to solve m influence the gies, and tools.	What does mathematics reveal about the world? What situations require the use of mathematical understandings? How does mathematics enable people to work with intangible phenomena (such as distance, space, and nanosecond)? How do concrete materials model mathematical situations? How do the characteristics of a situation influence the choice of operations, strategies, and tools? How is a solution determined to be reasonable, accurate, and complete?
TOPICS	ENABLING OUTCOMES	
Integers	Students will: - identify, order, and compare integers - graph integers on a number line - add, subtract, multiply, and divide integers and explain their operational processes - identify, order, and compare rational numbers - graph rational numbers on a number line - apply properties of operations as strategies to add, subtract, multiply, and divide rational numbers and explain their operational processes - describe situations in which opposite quantities combine to make 0 - understand subtraction of rational numbers as adding the additive inverse - convert rational numbers to decimals and classify as terminating, non-terminating, and repeating - solve real-world and mathematical problems involving the four operations of rational numbers	
Rational numbers Real numbers		
Percents	- classify rea - convert be - compare - calculate th o tax and o simple in o commiss o gratuitie o percent	numbers as rational, irrational, whole, integer, or natural ween decimal, fraction, and percent formats d order percents (including those less than one and greater than 100) percent of a number (20% of 50) including applications to iscount erest ns change
Ratios	- recognize - identify th and verba - solve ratio - solve word (16 is what - apply ratio	d represent proportional relationships between quantities constant of proportionality (unit rate) in tables, graphs, equations, diagrams, escriptions of proportional relationships quations using cross-multiplication problems involving ratios and proportions, including the percent proportion percent of 90) and solve problems involving scale, models, and unit rates
Exponents and roots	- calculate - estimate	rfect square roots value of a non-perfect square root to a given decimal point value

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Geometry and Measurement - Grade Seven} \\
\hline Essential Understandings \& Guided Questions -- What Students Need to Know \\
\hline \begin{tabular}{l}
Attributes and relationships of plane figures, objects, and patterns can be describe, understand, and communic the world. \\
Geometry has many real-world applic including design, architecture, and art \\
Measurement allows description, understanding, and communication world.
\end{tabular} \& \begin{tabular}{l}
used to ate about \\
ations \\
out the \\
How can geometry be seen in the natural and human-designed environments? \\
How are distance, direction, coordinates, and scale used to understand and explain the arrangement of objects and locations? \\
How do models and scale drawings enhance understanding used in problem-solving and design? \\
How do the characteristics of geometric shapes and figures influence their use in aesthetic and functional designs? \\
How is measurement used to quantify information about objects and events? How do the characteristics of objects and events influence the choice of measurement strategies and tools? \\
How does the precision required for a measurement influence the choice of strategies and tools? \\
How is the understanding and communication about measurement used to solve problems and make decisions?
\end{tabular} \\
\hline TOPICS \& ENABLING OUTCOMES \\
\hline Plane figures \& \begin{tabular}{l}
Students will: \\
- prove the similarity of plane figures by identifying congruent angles and proportional sides \\
- solve problems involving scale drawings \\
- calculate the lengths of sides of similar plane figures \\
- sketch, draw, and construct geometric shapes with given conditions using ruler, protractor, compass, and technology \\
- construct triangles from three measures of angles or sides \\
- verify the properties of dilations, rotations, reflections, and translations and use these properties to compare two-dimensional figures
\end{tabular} \\
\hline Solid figures

Formulas \& | - describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids |
| :--- |
| - develop and/or use formulas to calculate surface area and volume for solid figures (cone, sphere, pyramid, prism, cylinders) |
| - develop and/or use formulas to calculate the area and circumference of circles |
| - develop and/or use formulas to calculate the area and perimeter of plane figures |

\hline
\end{tabular}

Algebra - Grade Seven		
Essential Understandings		Guided Questions -- What Students Need to Know
Patterns aid description, understand communication about the world. Patterns and number relationships can used to investigate, understand, and problems.	ng, and n be solve	How and why are patterns used and where can they be found in human-designed environments? How are patterns and number relationships represented symbolically (such as consecutive odd numbers)? How are tables, graphs, and equations used to represent, analyze, and extend patterns? How are patterns used to solve problems and communicate information? What kinds of strategies help to reveal patterns and number relationships?
TOPICS	ENABLING OUTCOMES	
Expressions	Students will: - apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients - translate an expression from written to algebraic form and from algebraic to written form - identify and combine like terms $(2 x+3 x=5 x)$	
One-variable linear equations and inequalities		and check two-step equations $(2 x+3=5)$ using rational numbers and the ibutive property $[2(x+3)=8]$, check, and graph the solution to one- and two-step one-variable linear ualities excluding multiplication or division by a negative $[2 x>8 ; x-5<-9]$ multi-step real-life mathematical problems posed with positive and negative nal numbers in any form by constructing simple equations and inequalities uate solutions for reasonableness, accuracy, and completeness

Data Analysis and Probability - Grade Seven	
Essential Understandings	Guided Questions -- What Students Need to Know
Data collection and analysis can be used to predict outcomes, solve problems, and make decisions. Probability supports making predictions, drawing conclusions, and solving problems.	What factors influence the way data is collected and organized? How is the analysis of data used to solve problems? How is the reliability of data affected by the source, quantity, and method of collection? How is the presentation of data used or misused to support different points of view? How are the probability and odds of an event determined and expressed? What factors influence the certainty and uncertainty of an event? How is probability used to make predictions and draw conclusions?
TOPICS	ENABLING OUTCOMES
Probability and statistics Graphs	Students will: - differentiate between theoretical and experimental probability - investigate chance processes and develop, use, and evaluate probability models - calculate and interpret the probability of simple events - understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring - find probabilities of compound events using organized lists, tables, tree diagrams, and simulation - predict and infer data from a variety of graphs - use random sampling to draw inferences about a population - draw informal comparative inferences about two populations

PREALGEBRA ADH STANDARDS for ACCELERATED $7^{\text {TH }}$ GRADE OR STANDARD $8^{\text {TH }}$ GRADE

The Number Theories (NT)
PA.NT 7.1 Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
PA.NT 7.2 Compute flexibly and fluently and make reasonable estimates; APPLY TO REAL WORLD SITUATIONS
PA.NT 7.3 Understand and describe patterns and functional relationships
Expressions and Equations (EE)
PA.EE 7.1 Use properties of operations to generate equivalent expressions.
PA.EE 7.2 Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
PA.EE 7.3 Use mathematical models to represent and understand quantitative relationships
Ratios and Proportional Relationships (RP)
PA.RP 7.1 Analyze proportional relationships and use them to solve real-world and mathematical problems

Geometry \& Measurement (GM)
PA.GM 7.1 Analyze characteristics and properties of two and three dimensional geometric shapes and develop mathematical arguments about relationships
PA.GM 7.2 Use properties and characteristics of two-and three-dimensional shapes and geometric theorems to describe relationships, communicate ideas and solve problems
PA.GM 7.3 Develop and apply appropriate techniques, tools and formulas to estimate and determine measurements

Data Analysis, Statistics, and Probability (DSP)
PA.DSP 7.1 Collect, organize and display data using appropriate statistical and graphical methods.
PA.DSP 7.2 Select and use appropriate statistical methods to analyze data
PA.DSP 7.3 Analyze data sets to form hypotheses and make predictions
PA.DSP 7.4 Investigate chance processes and develop, use, and evaluate probability models

Pre-Algebra GRADE KEY FLUENCIES:

Extend understanding of ratios and develop understanding of proportionality to solve singleand multi-step problems.
Develop a unified understanding of number, recognizing fractions, decimals (that have a finite or a repeating decimal representation), and percents as different representations of rational numbers.
Developing understanding of operations with rational numbers and working with expressions and linear equations.

PA:Q1

		line and the commutative, associative, and distributive properties to develop estimation and computation strategies
Estimate to predict outcomes and determine		
reasonableness of results and to describe whether		
an estimate is an over- or underestimate		

PA:Q2

Solving Equations Solving 2-Step Equations	To use numbers, symbols, and words to represent and describe mathematical relationships (EE 7.3) To identify relationships that are linear and nonlinear and compare and contrast their properties using tables, graphs, equations and verbal descriptions (EE 7.3) To solve problems using a variety of algebraic representations (EE 7.2) To recognize and demonstrate equivalence using number properties (EE 7.1) To use numbers, symbols, and words to represent and describe mathematical relationships (EE 7.1-7.3) To identify relationships that are linear and nonlinear and compare and contrast their properties using tables, graphs, equations and verbal descriptions (EE 7.3)	- Use tables and graphs to measure and describe changes - Graph linear equations on an xy-axis - Graph functions from ordered pairs - Find function values - Solve problems with positive and negative numbers using models and number lines - Add, subtract, multiply and divide integers - Use order of operations including exponents - Use the order of operations to compute and solve a variety of multi-step problems, including those with parentheses and exponents - Use absolute value in solving problems - Simplify algebraic expressions by combining like terms - Demonstrate how to maintain equivalence in equations - Model and solve one step linear equations by maintaining equivalence (use inverse operations) - Represent numerical and contextual situations with algebraic expressions, equations, and inequalities (Use variables in patterns, formulas, functions and relations) - Contrast constants and variables - Simplify expressions that contain rational numbers - Write verbal expressions as algebraic expressions and sentences as equations - Evaluate expressions with exponents - Write an equation given some of the solutions - Evaluate expressions with square roots - Generalize mathematical situations using variables in expressions, equations and inequalities - Identify, express and apply the commutative, distributive, and associative properties of whole numbers - Use functional notation to express algebraic relationships - Graphically find the solution to a system of equations - Represent numerical and contextual situations with algebraic expressions, equations and inequalities - Evaluate algebraic expressions and formulas - Solve problems using concrete, verbal, symbolic, graphic and tabular representations - Solve equations in one variable that contain absolute value expressions - Model and solve two-step linear equations using a variety of methods (i.e., concrete materials, algebra tiles, pictorial representations, etc.) - Graph inequalities on the coordinate plane - Recognize that a linear relationship has a constant rate of change called slope - Find the slope of a line

\(\left.\begin{array}{|c|c|cc|}\hline - Use graphs, tables, equations and verbal descriptions to

represent and analyze changes in linear and nonlinear

relationships\end{array}\right\}\)| Identify the x and y intercepts |
| :--- |
| -Describe what a line will look like before it is graphed, i.e.
 if the line is in a positive or negative direction, and how
 steep the line should be by analyzing the slope
 Solve linear equations for " y " given the linear equation in
 any other form
 Determine the solutions of linear equations (0, 1, or an
 infinite number)
 Identify and write the equation for a line in point-slope,
 slope-intercept and standard forms |

PA:Q3

Graphs and Data Analysis	To analyze physical phenomena and patterns to identify relationships and make generalizations (NT 7.3) To collect and construct appropriate representations of data (DSP 7.2)	compound events in familiar contexts - Make and evaluate statistical claims and justify conclusions with evidence - Identify trends and justify conclusions - Describe the role of random sampling, random number generation, and the effects of sample size on statistical claims - Distinguish between combinations and permutations as ways to predict possible outcomes in certain situations - Use combinations and permutations, trees, and networks (counting strategies) in a variety of contexts - Identify when order is irrelevant in determining a solution - Determine the nature of changes in linear relationships using graphs, tables, and equations - Describe in context how a change in one variable relates to a change in a second variable - Identify the independent and dependent variables in a given situation - Formulate questions, design surveys and samplings - Organize and analyze gathered data and defend the analysis - Organize and display data using graphical representations - Make and defend predictions based on patterns and trends - Use a matrix to organize and describe data
PA:Q4		
TOPICS	OBJECTIVES	ENABLING OUTCOMES: The students will...
Geometry	To describe and develop relationships between geometric properties of plane and solid figures (GM 7.1) To identify and generalize relationships between measurable attributes of plane and solid figures (GM 7.1-7.3) To identify, draw, and describe elements needed to explain spatial relationships (GM 7.3)	- Identify which classes of polygons have line and/or rotational symmetry - Identify and classify angles as complementary or supplementary - Develop and use formulas to determine the volume of pyramids and cylinders - Calculate the surface area of a rectangular prism - Describe the effect of scale factors on the length, area, and volume ratios of similar polygons, circles, and solids - Make and test conjectures about the relationships among angles, sides, perimeters, and areas of congruent and similar polygons (Include the Pythagorean Theorem) - Verify the Pythagorean Theorem, using diagrams, concrete materials, and measurement - Apply the Pythagorean Theorem to find the missing length of a side of a right triangle when given the lengths of the other two sides - Draw and interpret nets, cross-sections, and front, side, and top views of various solids - Use rectangular grids to represent polygons and perform transformations (translations, rotations, reflections, and dilations) - Describe the effect of transformations on polygons with

Suggested Cross Curricular and Catholic Social Teaching Links

Grade Seven/Eight

Students write about and calculate the cost of war, natural disasters, unemployment, etc., expressing an understanding that, as Catholic Christians, we are called to work globally and locally for justice. (Math, Social Studies, Science)

* Students create graphs describing the inequality of the consumption of the world's resources and design service projects that address local and global injustice. (Math, Religion, Science)

ALGEBRA STANDARDS

A1. Understand and describe patterns and functional relationships
A2. Represent and analyze quantitative relationships in a variety of ways
A3. Use operations, properties and algebraic symbols to determine equivalence and solve problems
A4. Use properties and characteristics of two- and three-dimensional shapes and geometric theorems to describe relationships, communicate ideas, and solve problems
A5. Use spatial reasoning, location, and geometric relationships to solve problems
A6. Develop and apply units, systems, formulas and appropriate tools to estimate and measure

Algebra - Grade Eight

Essential Understandings	Guided Questions -- What Students Need to Know
Mathematics can be used to describe, understand, and communicate about the world in order to solve problems and make decisions.	What does mathematics reveal about the world? What situations require the use of mathematical understandings? How does mathematics enable people to work with intangible phenomena (such as distance, space, and nanosecond)? How do concrete materials model mathematical situations?
Characteristics of a situation or problem influence the choice of numbers, operations, strategies, and tools.	How do the characteristics of a situation influence the choice of numbers, operations, strategies, and tools? How is it determined that a solution is reasonable, accurate, and complete?

Model Traditional Pathway: High School Geometry

Introduction

The fundamental purpose of the course in Geometry is to formalize and extend students' geometric experiences from the middle grades. Students explore more complex geometric situations and deepen their explanations of geometric relationships, moving towards formal mathematical arguments. Important differences exist between this Geometry course and the historical approach taken in Geometry classes. For example, transformations are emphasized early in this course.

The high school Geometry standards, together with the content standards, prescribe that students experience mathematics as a coherent, useful, and logical subject that makes use of their ability to make sense of problem situations. Each high school should design their course syllabus using the following standards. For this high school Geometry course, instructional time should focus on the following six critical area units:

Unit1 Congruence, Proof, and Constructions: In previous grades, students were asked to draw triangles based on given measurements. They also have prior experience with rigid motions: translations, reflections, and rotations and have used these to develop notions about what it means for two objects to be congruent. In this unit, students establish triangle congruence criteria, based on analyses of rigid motions and formal constructions. They use triangle congruence as a familiar foundation for the development of formal proof. Students prove theorems-using a variety of formats-and solve problems about triangles, quadrilaterals, and other polygons. They apply reasoning to complete geometric constructions and explain why they work.

Unit 2 Similarity, Proof, and Trigonometry: Students apply their earlier experience with dilations and proportional reasoning to build a formal understanding of similarity. They identify criteria for similarity of triangles, use similarity to solve problems, and apply similarity in right triangles to understand right triangle trigonometry, with particular attention to special right triangles and the Pythagorean Theorem. Students develop the Laws of Sines and Cosines in order to find missing measures of general (not necessarily right) triangles, building on students' work with quadratic equations. They are able to distinguish whether three given measures (angles or sides) define $0,1,2$, or infinitely many triangles.

Unit 3 Extending to Three Dimensions: Students' experience with two-dimensional and threedimensional objects is extended to include informal explanations of circumference, area and volume formulas. Additionally, students apply their knowledge of two-dimensional shapes to consider the shapes of cross-sections and the result of rotating a two-dimensional object about a line.

Unit 4 Connecting Algebra and Geometry through Coordinates: Building on their work with the Pythagorean theorem in 8th grade to find distances, students use a rectangular coordinate system to verify geometric relationships, including properties of special triangles and quadrilaterals and slopes of parallel and perpendicular lines, which relates back to work done in the first course. Students continue their study of quadratics by connecting the geometric and algebraic definitions of the parabola.

Unit 5 Circles With and Without Coordinates: In this unit students prove basic theorems about circles, such as a tangent line is perpendicular to a radius, inscribed angle theorem, and theorems about chords, secants, and tangents dealing with segment lengths and angle measures. They study relationships among segments on chords, secants, and tangents as an application of similarity. In the Cartesian coordinate system, students use the distance formula to write the equation of a circle when given the radius and the coordinates of its center. Given an equation of a circle, they draw the graph in the coordinate plane, and apply techniques for solving quadratic equations, which relates back to work done in the first course, to determine intersections between lines and circles or parabolas and between two circles.

Unit 6 Applications of Probability: Building on probability concepts that began in the middle grades, students use the languages of set theory to expand their ability to compute and interpret theoretical and experimental probabilities for compound events, attending to mutually exclusive events, independent events, and conditional probability. Students should make use of geometric probability models wherever possible. They use probability to make informed decisions.

GEOMETRY

Unit 1: Congruence, Proof, and Constructions

Students will:

- Experiment with transformations in the plane.
- Understand congruence in terms of rigid motions.
- Prove geometric theorems.
- Make geometric constructions.

Unit 2: Similarity, Proof, and Trigonometry
Students will:

- Understand similarity in terms of similarity transformations.
- Prove theorems involving similarity.
- Define trigonometric ratios and solve problems involving right triangles.
- Apply geometric concepts in modeling situations.
- Apply trigonometry to general triangles.

Unit 3: Extending to Three Dimensions

Students will:

- Explain volume formulas and use them to solve problems.
- Visualize the relation between two-dimensional and three-dimensional objects.
- Apply geometric concepts in modeling situations.

Unit 4: Connecting Algebra and Geometry through Coordinates
Students will:

- Use coordinates to prove simple geometric theorems algebraically.
- Translate between the geometric description and the equation for a conic section.

Unit 5: Circles With and Without Coordinates
Students will:

- Understand and apply theorems about circles.
- Find arc lengths and areas of sectors of circles.
- Translate between the geometric description and the equation for a conic section.
- Use coordinates to prove simple geometric theorem algebraically.
- Apply geometric concepts in modeling situations.

Unit 6: Applications of Probability
Students will:

- Understand independence and conditional probability and use them to interpret data.
- Use the rules of probability to compute probabilities of compound events in a uniform probability model.
- Use probability to evaluate outcomes of decisions.

Unit 1: Congruence, Proof and Constructions

- Experiment with transformations in the plane.

1. Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
2. Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs.
3. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
4. Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
5. Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
6. Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

- Understand congruence in terms of rigid motions.

7. Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
8. Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
9. Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.

- Prove geometric theorems.

10. Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
11. Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
12. Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

- Make geometric constructions.

13. Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
14. Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.

Unit 2: Similarity, Proof, and Trigonometry

- Understand Similarity in terms of similarity transformations.

1. Verify experimentally the properties of dilations given by a center and a scale factor.
a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.
b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.
2. Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
3. Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.

- Prove theorems involving similarity.

4. Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.
5. Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

- Define trigonometric ratios and solve problems involving right triangles.

6. Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
7. Explain and use the relationship between the sine and cosine of complementary angles.
8. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.

- Apply geometric concepts in modeling situations.

9. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).*
10. Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).*
11. Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).*
12. Use dimensional analysis for unit conversions to confirm that expressions and equations make sense. *

- Apply trigonometry to general triangles.

13. Derive the formula $A=1 / 2 \mathrm{ab} \sin (\mathrm{C})$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side. +
14. Prove the Laws of Sines and Cosines and use them to solve problems. +
15. Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles(e.g., surveying problems, resultant forces). +

Unit 3: Extending to Three Dimensions

- Explain volume formulas and use them to solve problems.

1. Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments.
2. Give an informal argument using Cavalierir's principle for the formulas for the volume of a sphere and other solid figures.
3. Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. *

- Visualize the relation between two dimensional and three-dimensional objects.

4. Identify the shapes of two-dimensional cross-sections of three dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.

- Apply geometric concepts in modeling situations.

5. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).*
6. Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).
7. Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).
8. MA.4.Use dimensional analysis for unit conversions to confirm that expressions and equations make sense.

- Use coordinates to prove simple geometric theorems algebraically.

9. Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{ } 3)$ lies on the circle centered at the origin and containing the point $(0,2)$.
10. Prove the slope criteria for parallel and perpendicular lines and uses them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
11. Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
12. Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.

- Translate between the geometric description and the equation for a conic section.

13. Derive the equation of a parabola given a focus and directrix.
14. Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
15. Derive the equation of a parabola given a focus and directrix.

Unit 4: Connecting Algebra and Geometry Through Coordinates

- Use coordinates to prove simple geometric theorems algebraically.

1. Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is rectangle; prove or disprove that the point $(1, \sqrt{ } 3)$ lies on the circle centered at the origin and containing the point $(0,2)$.
2. Prove the slope criteria for parallel and perpendicular lines and uses them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
3. Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
4. Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.*

- Translate between the geometric description and the equation for a conic section.

5. Derive the equation of a parabola given a focus and directrix.

Unit 5: Circles With and Without Coordinates

- Understand and apply theorems about circles.

1. Prove that all circles are similar.
2. Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
3. Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
4. Construct a tangent line from a point outside a given circle to the circle. +

- Find arc lengths and areas of sectors of circles.

5. Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.

- Translate between the geometric description and the equation for a conic section.

6. Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
7. Derive the equation of a parabola given a focus and directrix

- Use coordinates to prove simple geometric theorems algebraically.

8. Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and containing the point $(0,2)$.
9. Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
10. Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
11. Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *

- Apply geometric concepts in modeling situations.

12. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).
13. Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).
14. Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).
15. Use dimensional analysis for unit conversions to confirm that expressions and equations make sense.
[^1]
Unit 6: Applications of Probability

- Understand independence and conditional probability and use them to interpret data.

1. Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").
2. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.
3. Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.
4. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.
5. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.

- Use the rules of probability to compute probabilities of compound events in a uniform probability model.

6. Find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A, and interpret the answer in terms of the model.
7. Apply the Addition Rule, $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$, and interpret the answer in terms of the model.
8. (+) Apply the general Multiplication Rule in a uniform probability model, $P(A$ and $B)=P(A) P(B \mid A)=P(B) P(A \mid B)$, and interpret the answer in terms of the model. \star
9. (+) Use permutations and combinations to compute probabilities of compound events and solve problems.

- Use probability to evaluate outcomes of decisions.

10. Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). +
11. Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). +
12. Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). **

Model Traditional Pathway: High School Algebra II

Introduction

Building on their work with linear, quadratic, and exponential functions, students extend their repertoire of functions to include polynomial, rational, and radical functions. Students work closely with the expressions that define the functions, and continue to expand and hone their abilities to model situations and to solve equations, including solving quadratic equations over the set of complex numbers and solving exponential equations using the properties of logarithms.

The standards for this Algebra II course², together with the content standards, prescribe that students experience mathematics as a coherent, useful, and logical subject that makes use of their ability to make sense of problem situations. Each high school should design their course syllabus using the following standards. For this high school Algebra Il course, instructional time should focus on the following six critical area units:

Unit 1 Polynomial, Rational, and Radical Relationships: This unit develops the structural similarities between the system of polynomials and the system of integers. Students draw on analogies between polynomial arithmetic and base-ten computation, focusing on properties of operations, particularly the distributive property. Students connect multiplication of polynomials with multiplication of multi-digit integers, and division of polynomials with long division of integers. Students identify zeros of polynomials, including complex zeros of quadratic polynomials, and make connections between zeros of polynomials and solutions of polynomial equations. The unit culminates with the fundamental theorem of algebra. A central theme of this unit is that the arithmetic of rational expressions is governed by the same rules as the arithmetic
of rational numbers.

Unit 2 Trigonometric Functions: Building on their previous work with functions, and on their work with trigonometric ratios and circles in Geometry, students now use the coordinate plane to extend trigonometry to model periodic phenomena.

Unit 3 Modeling with Functions: In this unit students synthesize and generalize what they have learned about a variety of function families. They extend their work with exponential functions to include solving exponential equations with logarithms. They explore the effects of transformations on graphs of diverse functions, including functions arising in an application, in order to abstract the general principle that transformations on a graph always have the same effect regardless of the type of the underlying function. They identify appropriate types of functions to model a situation, they adjust parameters to improve the model, and they compare models by analyzing appropriateness of fit and making judgments about the domain over which a model is a good fit. The description of modeling as "the process of choosing and using mathematics and statistics to analyze empirical situations, to understand them better, and to make decisions" is at the heart of this unit. The narrative discussion and diagram of the modeling cycle should be considered when knowledge of functions, statistics, and geometry is applied in a modeling context.

[^2]Unit 4 Inferences and Conclusions from Data: In this unit, students see how the visual displays and summary statistics they learned in earlier grades relate to different types of data and to probability distributions. They identify different ways of collecting data- including sample surveys, experiments, and simulations-and the role that randomness and careful design play in the conclusions that can be drawn. In this course rational functions are limited to those whose numerators are of degree at most 1 and denominators of degree at most 2; radical functions are limited to square roots or cube roots of at most quadratic polynomials.

ALGEBRA II

Unit 1: Polynomial, Rational, and Radical Relationships

Students will:

- Perform arithmetic operations with complex numbers.
- Use complex numbers in polynomial identities and equations.
- Interpret the structure of expressions.
- Write expressions in equivalent forms to solve problems.
- Perform arithmetic operations on polynomials.
- Understand the relationship between zeros and factors of polynomials.
- Use polynomial identities to solve problems.
- Rewrite rational expressions.
- Understand solving equations as a process of reasoning and explain the reasoning.
- Represent and solve equations and inequalities graphically.
- Analyze functions using different representations.

Unit 2: Trigonometric Functions

Students will:

- Extend the domain of trigonometric functions using the unit circle.
- Model periodic phenomena with trigonometric function.
- Prove and apply trigonometric identities.

Unit 3: Modeling with Functions

Students will:

- Create equations that describe numbers or relationships.
- Interpret functions that arise in applications in terms of a context.
- Analyze functions using different representations.
- Build a function that models a relationship between two quantities.
- Build new functions from existing functions.
- Construct and compare linear, quadratic, and exponential models and solve problems.

Unit 4: Inferences and Conclusions from Data

Students will:

- Summarize, represent, and interpret data on single count or measurement variable.
- Understand and evaluate random processes underlying statistical experiments.
- Make inferences and justify conclusions from sample surveys, experiments and observational studies.
- Use probability to evaluate outcomes of decisions

Archdiocese_of_Hartford_Math_Curriculum_Standards_2012 9/19/2013 11:10 AM

Algebra II

Unit 1: Polynomial, Rational, and Radical Relationships

- Perform arithmetic operations with complex numbers.

1. Know there is a complex number i such that $i 2=-1$, and every complex number has the form $a+b i$ with a and b real.
2. Use the relation $i 2=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.

- Use complex numbers in polynomial identities and equations.

3. Solve quadratic equations with real coefficients that have complex solutions.
4. Extend polynomial identities to the complex numbers. For example, rewrite $x 2+4$ as $(x+2 i)(x-2 i)$. +
5. Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials. +

- Interpret the structure of expressions. Extend to polynomial and rational expressions.

6. Interpret expressions that represent a quantity in terms of its context. \star
7. Interpret parts of an expression, such as terms, factors, and coefficients.
8. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r) n$ as the product of P and a factor not depending on P.
9. Use the structure of an expression to identify ways to rewrite it. For example, see $x 4-y 4$ as ($x 2$)2 (y2)2, thus recognizing it as a difference of squares that can be factored as $(x 2-y 2)(x 2+y 2)$.

- Write expressions in equivalent forms to solve problems.

10. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments. \star

- Perform arithmetic operations on polynomials.

11. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

- Understand the relationship between zeros and factors of polynomials.

12. Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.
13. Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

- Use polynomial identities to solve problems.

14. Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $(x 2+y 2) 2=(x 2-y 2) 2+(2 x y) 2$ can be used to generate Pythagorean triples.
15. Know and apply the Binomial Theorem for the expansion of $(x+y) n$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle. +

- Rewrite rational expressions

16. Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form $q(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.
17. Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions. +

- Understand solving equations as a process of reasoning and explain the reasoning.

18. Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

- Represent and solve equations and inequalities graphically.

19. Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

- Analyze functions using different representations.

20. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

- Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.

Unit 2: Trigonometric Functions

- Extend the domain of trigonometric functions using the unit circle.

1. Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
2. Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.

- Model periodic phenomena with trigonometric functions.

3. Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. \star

- Prove and apply trigonometric identities.

4. Prove the Pythagorean identity $\sin 2(\theta)+\cos 2(\theta)=1$ and use it to find $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$, given $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$, and the quadrant of the angle.

Unit 3: Modeling with Functions

- Create equations that describe numbers or relationships.

1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.
4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.

- Interpret functions that arise in applications in terms of a context.

5. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.
6. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. \star
7. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. \star

- Analyze functions using different representations.

8. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. \star
b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
9. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
10. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

- Build a function that models a relationship between two quantities.

11. Write a function that describes a relationship between two quantities.*
b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model..

- Build new functions from existing functions.

12. Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
13. Find inverse functions.
a. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 \times 3$ or $f(x)=(x+1) /(x-1)$ for $x \neq 1$.

- Construct and compare linear, quadratic, and exponential models and solve problems.

14. For exponential models, express as a logarithm the solution to a $b c t=d$ where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.

Unit 4: Inferences and Conclusions from Data

- Summarize, represent, and interpret data on a single count or measurement variable.

1. Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.

- Understand and evaluate random processes underlying statistical experiments.

2. Understand statistics as a process for making inferences about population parameters based on a random sample from that population.
3. Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5 . Would a result of 5 tails in a row cause you to question the model?

- Make inferences and justify conclusions from sample surveys, experiments, and observational studies.

4. Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.
5. Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.
6. Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.
7. Evaluate reports based on data.

- Use probability to evaluate outcomes of decisions.

8. Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). +
9. Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). +

Model Advanced Course: Model Precalculus

Introduction

Precalculus combines the trigonometric, geometric, and algebraic techniques needed to prepare students for the study of calculus, and strengthens students' conceptual understanding of problems and mathematical reasoning in solving problems. Facility with these topics is especially important for students intending to study calculus, physics, and other sciences, and/or engineering in college. Because the standards for this course are (+) standards, students selecting this Model Precalculus ${ }^{3}$ course should have met the college and career ready standards.

Each high school should design their course syllabus using the following standards. For the high school Model Precalculus course, instructional time should focus on the following four critical area units: (1) extend work with complex numbers; (2) expand understanding of logarithms and exponential functions; (3) use characteristics of polynomial and rational functions to sketch graphs of those functions; and (4) perform operations with vectors.

Unit 1 Extend Work with Complex Numbers: Students continue their work with complex numbers. They perform arithmetic operations with complex numbers and represent them and the operations on the complex plane. Students investigate and identify the characteristics of the graphs of polar equations, using graphing tools. This includes classification of polar equations, the effects of changes in the parameters in polar equations, conversion of complex numbers from rectangular form to polar form and vice versa, and the intersection of the graphs of polar equations.

Unit 2 Expand Understanding of Logarithms and Exponential Functions: Students expand their understanding of functions to include logarithmic and trigonometric functions. They investigate and identify the characteristics of exponential and logarithmic functions in order to graph these functions and solve equations and practical problems. This includes the role of e, natural and common logarithms, laws of exponents and logarithms, and the solutions of logarithmic and exponential equations. Students model periodic phenomena with trigonometric functions and prove trigonometric identities. Other trigonometric topics include reviewing unit circle trigonometry, proving trigonometric identities, solving trigonometric equations, and graphing trigonometric functions.

Unit $\mathbf{3}$ Use Characteristics of Polynomial and Rational Functions to Sketch Graphs of Functions: Students investigate and identify the characteristics of polynomial and rational functions and use these to sketch the graphs of the functions. They determine zeros, upper and lower bounds, y-intercepts, symmetry, asymptotes, intervals for which the function is increasing or decreasing, and maximum or minimum points. Students translate between the geometric description and equation of conic sections. They deepen their understanding of the Fundamental Theorem of Algebra.

Unit 4 Perform Operations with Vectors: Students perform operations with vectors in the coordinate plane and solve practical problems using vectors. This includes the following topics: operations of addition, subtraction, scalar multiplication, and inner (dot) product; norm of a vector; unit vector; graphing; properties; simple proofs; complex numbers (as vectors); and perpendicular components.

[^3]
Precalculus

Number and Quantity

The Complex Number System

- Perform arithmetic operations with complex numbers.

1. ${ }^{(+)}$Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.

- Represent complex numbers and their operations on the complex plane.

2. Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.
3. Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, $(-1+\sqrt{3 i})^{3}=8$ because $(-1+\sqrt{3 i})$ has modulus 2 and argument 120°.
4. (+) Calculate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a segment as the average of the numbers at its endpoints.

- Use complex numbers in polynomial identities and equations.

5. (+) Extend polynomial identities to the complex numbers. For example, rewrite $x^{2}+4$ as $(x+2 i)(x-2 i)$.
6. (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.

Vector and Matrix Quantities

- Represent and model with vector quantities.

7. (+) Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v, |v|, $||v||, v)$.
8. (+) Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.
9. (+) Solve problems involving velocity and other quantities that can be represented by vectors.
[^4]- Perform operations on vectors.

10. (+) Add and subtract vectors.
a. (+) Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes.
b. (+) Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.
c. (+) Understand vector subtraction $\boldsymbol{v}-\boldsymbol{w}$ as $\boldsymbol{v}+(-\boldsymbol{w})$, where $\boldsymbol{-} \boldsymbol{w}$ is the additive inverse of \boldsymbol{w}, with the same magnitude as \boldsymbol{w} and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.
11. (+) Multiply a vector by a scalar.
a. (+) Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as $c\left(v_{x}, v_{y}\right)=\left(c v_{x}, c v_{y}\right)$.
b. (+) Compute the magnitude of a scalar multiple $c \boldsymbol{v}$ using $\| c v| |=|c| v$. Compute the direction of $c \boldsymbol{v}$ knowing that when $|c| v \neq 0$, the direction of $c \boldsymbol{v}$ is either along \boldsymbol{v} (for $c>0$) or against $\boldsymbol{v}($ for $c<0)$.

- Perform operations on matrices and use matrices in applications.

12. (+) Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network.
13. (+) Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled.
14. (+) Add, subtract, and multiply matrices of appropriate dimensions.
15. (+) Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.
16. (+) Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.
17. (+) Multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector. Work with matrices as transformations of vectors.
18. (+) Work with 2×2 matrices as transformations of the plane, and interpret the absolute value of the determinant in terms of area.

Algebra

Arithmetic with Polynomials and Rational Expressions

- Use polynomial identities to solve problems.

19. (+) Know and apply the Binomial Theorem for the expansion of $(x+y)^{n}$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle. ${ }^{4}$

- Rewrite rational expressions.

20. Rewrite simple rational expressions in different forms; write $\boldsymbol{a}(\boldsymbol{x}) / \boldsymbol{b}(x)$ in the form $q(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.
21. (+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.

Reasoning with Equations and Inequalities

- Solve systems of equations.

22. (+) Represent a system of linear equations as a single matrix equation in a vector variable.
23. (+) Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3×3 or greater).

Functions

Interpreting Functions

- Analyze functions using different representations.

24. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. *
c. (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.

Building Functions

- Build a function that models a relationship between two quantities.

25. Write a function that describes a relationship between two quantities. *

[^5]d. (+) Compose functions. For example, if $T(y)$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t))$ is the temperature at the location of the weather balloon as a function of time. \star

- Build new functions from existing functions.

26. Find inverse functions.
27. b. (+) Verify by composition that one function is the inverse of another.
d. (+) Read values of an inverse function from a graph or a table, given that the function has an inverse.
e. (+) Produce an invertible function from a non-invertible function by restricting the domain.
28. (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.

Trigonometric Functions

- Extend the domain of trigonometric functions using the unit circle.

29. (+) Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi / 3, \pi / 4$ and $\pi / 6$, and use the unit circle to express the values of sine, cosine, and tangent for $\pi-x, \pi+x$, and $2 \pi-x$ in terms of their values for x, where x is any real number.
30. (+) Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.

- Model periodic phenomena with trigonometric functions.

31. (+) Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.
32. (+) Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context.

- Prove and apply trigonometric identities.

33. (+) Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.
[^6]
Geometry

Similarity, Right Triangles, and Trigonometry

- Apply trigonometry to general triangles.

34. (+) Derive the formula $A=1 / 2 a b \sin (C)$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.
35. (+) Prove the Laws of Sines and Cosines and use them to solve problems.
36. (+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).

Circles

- Understand and apply theorems about circles.

37. Construct a tangent line from a point outside a given circle to the circle.

Expressing Geometric Properties with Equations

- Translate between the geometric description and the equation for a conic section.

38. (+) Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.
39. MA.3.a. (+) Use equations and graphs of conic sections to model real-world problems. *

Geometric Measurement and Dimension

- Explain volume formulas and use them to solve problems.

40. (+) Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.

- Visualize relationships between two-dimensional and three-dimensional objects.

41. Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify threedimensional objects generated by rotations of two-dimensional objects.
[^7]
[^0]: ${ }^{1}$ Center for Catholic School Effectiveness, School of Education, Loyola University Chicago in partnership with Roche Center for Catholic Education, Lynch School of Education, Boston College (2012)

[^1]: * indicates Modeling standard.
 $(+)$ indicates standard beyond College and Career Ready.

[^2]: ${ }^{2}$ Adopted from the Archdiocese of Hartford Mathematics Standards, the Common Core State Standards for Mathematics and Appendix A: Designing High School Courses based on the Common Core State Standards for Mathematics, 2010.

[^3]: ${ }^{3}$ Adopted from the Massachusetts State Curriculum, the Common Core State Standards for Mathematics, and Appendix A: Designing High School Courses based on the Common Core State Standards for Mathematics, 2010 Archdiocese_of_Hartford_Math_Curriculum_Standards_2012 9/19/2013 11:10 AM

[^4]: ${ }^{(+)}$indicates standard beyond College and Career Ready.
 Archdiocese_of_Hartford_Math_Curriculum_Standards_2012 9/19/2013 11:10 AM

[^5]: ${ }^{4}$ The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument. (+) indicates standard beyond College and Career Ready.

 * indicates Modeling standard.

 Archdiocese_of_Hartford_Math_Curriculum_Standards_2012 9/19/2013 11:10 AM

[^6]: * indicates Modeling standard.
 (+) indicates standard beyond College and Career Ready.
 Archdiocese_of_Hartford_Math_Curriculum_Standards_2012 9/19/2013 11:10 AM

[^7]: * indicates Modeling standard.
 (+) indicates standard beyond College and Career Ready.
 Archdiocese_of_Hartford_Math_Curriculum_Standards_2012 9/19/2013 11:10 AM

